Introduction burnはRust用Deep Learningフレームワークです。 現在アクティブに開発が進められているようで、 今後が期待できるプロダクトです。 公開されているMNISTデモはこちら。 今回はこのburnを用いて、ONNX形式の既存モデルを burn用モデルに変換して使ってみます。 Burn? burnは2021年にリリースされた新しめの深層学習フレームワークです。 少し使ってみた感じだと、PyTorchに近い感じです。 burnの特徴は、以下のとおりです。 Tensor Tensor(テンソル)は、深層学習フレームワークを使う際の 基本的なデータ構造であり、 多次元の数値データを表現するために使用します。 burnでも例によってTensor構造体を使います。 このあたりも既存のフレームワークを使い慣れている人なら 馴染みやすいかと思います。 バックエンド bu
AWS Neuron は、生成系 AI 向けに構築された Amazon EC2 Inferentia および Trainium ベースのインスタンス用の SDK です。本日、Neuron 2.15 のリリースに伴い、Llama-2 70b モデルのトレーニングのサポートおよび PyTorch 2.0 のサポートを発表いたします。 Neuron は PyTorch や TensorFlow などの一般的な ML フレームワークと統合されているため、ベンダー固有のソリューションを必要とせずに、最小限のコード変更で開始できます。Neuron には、Trn1 インスタンスでの生成系 AI モデルの高性能トレーニングと Inf2 インスタンスでの推論をサポートするコンパイラ、ランタイム、プロファイリングツール、ライブラリが含まれています。このリリースでは、Neuron Distributed ライブ
Turing株式会社の自動運転・AIモデル開発チームの岩政(@colum2131)です。 Turingは2030年までに完全自動運転の達成を目指しており、自動運転AI開発から車両開発など、取り組むことは多岐に渡っています。 今回の話は、自動運転AI開発中に出た問題と、ひとまずの解決方法になります。より良い解決策があれば、教えてもらいたいです🙏 Transfomer-EncoderをONNXに変換したい ONNX(Open Neural Network eXchange)は、機械学習・深層学習モデルを表現するために構築されたオープンフォーマットです。 PyTorchやTensorFlow、scikit-learnなどのフレームワークで学習されたモデルをONNXに変換することでサーバーやエッジデバイスなど多様なハードウェアで運用が可能です。各ハードウェアごとに最適化されたフォーマットにも変換
最近「なぜ関数プログラミングは重要か」という文書の存在を知りました。関数型プログラミング界隈ではかなり有名な文書のようだったので私も読んでみたのですが、話題の一つとして「遅延評価がプログラムのモジュール化を可能にし、生産性を高める」という話が事例とともに説明されており、とても勉強になりました。まだまだ理解しきれてはいませんが…… 本記事では、「なぜ関数プログラミングは重要か」に触発された私が、試しに機械学習のパイプライン構築に遅延評価を適用してみた事例を紹介します。読者のターゲットは普段Pythonで機械学習に触れているデータサイエンティストの方です。本記事を通して、遅延評価を使うと機械学習の学習処理ような「停止条件を満たすまでforループを回す」系の処理をうまくモジュール化できることを実感していただければ幸いです。一方で、例えばC#のLINQやJavaのStream APIなど (私はよ
1. はじめに 世は大インターネット時代。「ニュースは紙ではなく、スマホで。」が当たり前。日々生み出される膨大なニュースの中から個人の嗜好に基づいた記事を抽出するニュース推薦システムの需要は高まり、Microsoft NewsやYahoo News、Smart Newsなど数多くのオンラインニュースメディアが、その分野に多大なる労力を割いています。そして、近年用いられる手法の多くは機械学習技術が用いられています。 ニュース推薦における推薦アイテムは、いうまでもなく「ニュース記事」。そしてその大部分はテキスト情報から構成されます。機械学習 x テキスト処理となると、今最もホットなトピックといえば、やはり大規模言語モデルの応用です。 大規模言語モデルは、膨大なコーパスによる事前学習を通して深い言語理解を獲得した大規模なニューラルネットです。文書分類や翻訳、対話応答など、様々な自然言語処理タスク
はじめに 本記事では今更ながら、この世で一番シンプルな機械学習モデル(全結合1層)を使ってMNISTの分類課題を行い、訓練の各過程でGPU上にどれくらいメモリが割り当てられるかを確認、解釈を行った。 pytorch_memlab(あるいはtorch.cuda.memory_allocated(device))で表示される、PyTorchのテンソルによって占有されているGPUメモリ消費に関して説明が可能だったので、それを雑多にまとめ、検証している。 実験 条件 PyTorch == 1.13.1 GPU : NVIDIA Tesla A30 CUDA version == 12.1 MNISTデータセットを一層の全結合層で分類。 最適化手法はSGD。 以下のmain.py(これはmodels.pyをimportして動くファイル)をpython main.pyで実行し、分類を行った。 今回は訓
概要 Unityが発表したAIツール群。その中にあるSeintsは、Barracudaをリプレイスすることを目標に作られているもののようです。現在はまだβプログラムで、全員が利用できるわけではありませんが、運良く参加できたので早速試してみました。 が、今回の内容はほぼBarracudaでも同じような内容になります。ONNXモデルを利用したフローを自分が理解したかったのでちょっとやってみた、という内容の記事ですw 今回は利用方法というより、全体の構造を把握、理解することを目的としています。Barracudaでもそうでしたが、SentisでもONNX(Open Neural Network Exchange)を利用してAIを構築します。 そこでONNXを自作し、それをSentis上で扱うまでを解説しながら使い方や使うイメージを掴んでもらえればと思います。 PyTorchでモデルを作成する ON
はじめに Turing株式会社の自動運転MLチームでエンジニアをしている越智 (@chizu_potato)と塩塚 (@shiboutyoshoku) です。 Turingが目指す自動運転は、大量のデータで学習された非常に賢い機械学習モデルを活用することです。そのために、走行パートナーの方たちと協力して創業時からこれまで大量の走行データを取得してきました。走行データは車両に取り付けられた複数カメラによる360度をカバーした動画と、そのときの速度やGPSなどの走行ログを含んでいます。データサイズは80TBを超え、時間換算で3500時間程度です。 これだけのデータサイズでモデルを学習するためには、1枚のGPUだけで頑張るには限界があり複数のGPU (multi-GPU) による分散並列学習が必要となってきます。しかし、ただ分散並列学習を行うだけではmulti-GPUに対し、データの入出力 (I
Introducing Keras Core: Keras for TensorFlow, JAX, and PyTorch. We're excited to share with you a new library called Keras Core, a preview version of the future of Keras. In Fall 2023, this library will become Keras 3.0. Keras Core is a full rewrite of the Keras codebase that rebases it on top of a modular backend architecture. It makes it possible to run Keras workflows on top of arbitrary framew
はじめに CTOの都筑(@tsuzukit2)です この記事では PyTorch の Embedding の挙動について記載します Embedding とは何か 公式の仕様書はこちらになります Embedding - PyTorch 1.9.0 documentation 公式の説明は以下となっており、非常に的を得ていると思います A simple lookup table that stores embeddings of a fixed dictionary and size. 意訳すると、 固定長の辞書埋め込みを保存するシンプルなルックアップテーブル になるんじゃないかなと思います。Embedding は、何だか難しそうにも思えてしまうのですが、ここに記載されている通り非常にシンプルなテーブルでしかないという事です モジュールの解説としては以下のように記載があります This mod
はじめに 機械学習コードに用いられるPyTorchコーディング時の実装負担低減を目的として、テンプレートコードを作成してみました。本記事では具体的な使用方法を記載します。(テンプレートコード部分の実装は文献1を参考にさせていただきました) ソースコード 下記リンクからアクセス可能です。 テンプレートコードはframeworkディレクトリに、ユーザー実装部分はusrディレクトリに、それぞれ格納されています。 使用方法 本テンプレートコードを使用することにより、自作のデータセットおよびモデル(+損失関数等)を用意するだけで、簡単にモデルの学習やテストができるようになります。ここでは、具体的な使用方法について説明します。 1. データセットの構築 初めに、データセットを読み込むためのクラスを作成します。データセットはユーザー定義であることから、データ形状等に制約はありません。一方で、後述するデー
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く