default search action
Mitsuji Sampei
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Riku Funada, Mustafa Soliman, Tatsuya Ibuki, Mitsuji Sampei:
Hoverable structure transformation for multirotor UAVs with laterally actuated frame links. Adv. Robotics 38(9-10): 684-697 (2024) - [j15]Riku Funada, María Santos, Ryuichi Maniwa, Junya Yamauchi, Masayuki Fujita, Mitsuji Sampei, Magnus Egerstedt:
Distributed Coverage Hole Prevention for Visual Environmental Monitoring With Quadcopters Via Nonsmooth Control Barrier Functions. IEEE Trans. Robotics 40: 1546-1565 (2024) - [c66]Takumi Ito, Riku Funada, Mitsuji Sampei:
A Tailsitter UAV with a Passive Joint Able to Turn Acutely with a Flip Motion. CASE 2024: 225-231 - [c65]Koju Nishimoto, Yuki Onishi, Riku Funada, Mitsuji Sampei:
Controller Design for Linear Systems via Controllability Gramian Shaping. CCTA 2024: 832-838 - [c64]Takumi Ito, Riku Funada, Mitsuji Sampei:
Design and Control of a VTOL Aerial Vehicle Tilting its Rotors Only with Rotor Thrusts and a Passive Joint. ECC 2024: 1435-1442 - 2023
- [j14]Tatsuya Ibuki, Taichi Hirano, Riku Funada, Mitsuji Sampei:
Optimization-based distributed safety control with applications to collision avoidance for mobile robotic networks. Adv. Robotics 37(1-2): 87-98 (2023) - [j13]Yuki Onishi, Mitsuji Sampei:
Priority-based state machine synthesis that relaxes behavior design of multi-arm manipulators in dynamic environments. Adv. Robotics 37(5): 395-405 (2023) - [j12]Takumi Ito, Riku Funada, Shunsuke Mochida, Takahiro Kawagoe, Tatsuya Ibuki, Mitsuji Sampei:
Design and experimental verification of a hoverable quadrotor composed of only clockwise rotors. Adv. Robotics 37(10): 667-678 (2023) - [j11]Satoshi Nakano, Tam W. Nguyen, Emanuele Garone, Tatsuya Ibuki, Mitsuji Sampei:
Explicit reference governor on SO(3) for torque and pointing constraint management. Autom. 155: 111103 (2023) - [i4]Riku Funada, Koju Nishimoto, Tatsuya Ibuki, Mitsuji Sampei:
Collision Avoidance for Ellipsoidal Rigid Bodies with Control Barrier Functions Designed from Rotating Supporting Hyperplanes. CoRR abs/2308.12073 (2023) - [i3]Takumi Ito, Riku Funada, Mitsuji Sampei:
Design and Control of a VTOL Aerial Vehicle Tilting its Rotors Only with Rotor Thrusts and a Passive Joint. CoRR abs/2311.05259 (2023) - 2022
- [j10]Ryunosuke Watanabe, Tatsuya Ibuki, Yoshihiro Sakayanagi, Riku Funada, Mitsuji Sampei:
Risk-Aware Energy Management for Drive Mode Control in Plug-in Hybrid Electric Vehicles. IEEE Access 10: 103619-103631 (2022) - [c63]Ryunosuke Watanabe, Koju Nishimoto, Tatsuya Ibuki, Yoshihiro Sakayanagi, Riku Funada, Mitsuji Sampei:
Drive Mode Control with a Catalyst Temperature Model for Fuel and Emissions Reduction in Plug-in Hybrid Electric Vehicles. ACC 2022: 3064-3070 - [c62]Koju Nishimoto, Riku Funada, Tatsuya Ibuki, Mitsuji Sampei:
Collision Avoidance for Elliptical Agents with Control Barrier Function Utilizing Supporting Lines. ACC 2022: 5147-5153 - [c61]Shunsuke Mochida, Ryotaro Onuki, Takahiro Kawagoe, Takumi Ito, Tatsuya Ibuki, Riku Funada, Mitsuji Sampei:
Hoverability Analysis and Development of a Quadrotor Only with Clockwise Rotors. IROS 2022: 7558-7564 - [i2]Koju Nishimoto, Riku Funada, Tatsuya Ibuki, Mitsuji Sampei:
Collision Avoidance for Elliptical Agents with Control Barrier Function Utilizing Supporting Lines. CoRR abs/2204.13287 (2022) - [i1]Riku Funada, Maria Santos, Ryuichi Maniwa, Junya Yamauchi, Masayuki Fujita, Mitsuji Sampei, Magnus Egerstedt:
Distributed Coverage Hole Prevention for Visual Environmental Monitoring with Quadcopters via Nonsmooth Control Barrier Functions. CoRR abs/2211.02872 (2022) - 2021
- [j9]Shunsuke Mochida, Remma Matsuda, Tatsuya Ibuki, Mitsuji Sampei:
A Geometric Method of Hoverability Analysis for Multirotor UAVs With Upward-Oriented Rotors. IEEE Trans. Robotics 37(5): 1765-1779 (2021) - [c60]Yuki Onishi, Shuuji Kajita, Tatsuya Ibuki, Mitsuji Sampei:
Knee-stretched Biped Gait Generation along Spatially Quantized Curves. IROS 2021: 5120-5127 - 2020
- [j8]Yuichi Tadokoro, Yuki Taya, Tatsuya Ibuki, Mitsuji Sampei:
Real-Time Model Predictive Control of Rigid Body Motion via Discretization Using the Cayley Map. IEEE Access 8: 17149-17159 (2020) - [c59]Ryunosuke Watanabe, Shoji Hirate, Tatsuya Ibuki, Yoshihiro Sakayanagi, Mitsuji Sampei:
Route-optimized Drive Mode Switching Control for Plug-in Hybrid Vehicles: Controller Design and Experimental Validation. CCTA 2020: 207-212
2010 – 2019
- 2019
- [c58]Mahato Endo, Tatsuya Ibuki, Mitsuji Sampei:
Collision-free Formation Control for Quadrotor Networks Based on Distributed Quadratic Programs. ACC 2019: 3335-3340 - [c57]Yuichi Tadokoro, Tatsuya Ibuki, Mitsuji Sampei:
Nonlinear Model Predictive Control of a Fully-actuated UAV on SE(3) using Acceleration Characteristics of the Structure. ASCC 2019: 283-288 - 2018
- [c56]Yuichi Tadokoro, Tatsuya Ibuki, Mitsuji Sampei:
Classification and Structural Evaluation of Fully-Actuated Hexrotor UAVs. ACC 2018: 1945-1950 - [c55]Yuichi Tadokoro, Tatsuya Ibuki, Mitsuji Sampei:
Joint Optimization of Geometric Control and Structure of a Fully-actuated Hexrotor based on an Analytic HJBE Solution. CDC 2018: 1186-1191 - [c54]Satoshi Nakano, Tam W. Nguyen, Emanuele Garone, Tatsuya Ibuki, Mitsuji Sampei:
Attitude Constrained Control on SO(3): An Explicit Reference Governor Approach. CDC 2018: 1833-1838 - [c53]Remma Matsuda, Tatsuya Ibuki, Mitsuji Sampei:
A Hoverability Analysis Method for Multirotor UAVs with a Case Study on Fault Tolerance. CDC 2018: 4264-4269 - 2017
- [c52]Shunsuke Kimura, Hisakazu Nakamura, Hiroki Shudai, Tatsuya Ibuki, Mitsuji Sampei:
Position and attitude control of two-wheeled mobile robot using multilayer minimum projection method. CCTA 2017: 299-304 - [c51]Satoshi Nakano, Tatsuya Ibuki, Mitsuji Sampei:
Dynamic visual feedback position tracking of two-wheeled vehicles with a target vehicle motion model. CCTA 2017: 1791-1796 - [c50]Naoto Murakami, Tatsuya Ibuki, Mitsuji Sampei:
State regulation of nonholonomic systems with dynamics based on time-state control form. CDC 2017: 6119-6124 - 2015
- [c49]Tatsuya Ibuki, Yuichi Tadokoro, Yuki Fujita, Mitsuji Sampei:
3D inverted pendulum stabilization on a quadrotor via bilinear system approximations. CCA 2015: 513-518 - [c48]Katsuyuki Kiso, Tatsuya Ibuki, Masahiro Yasuda, Mitsuji Sampei:
Structural optimization of hexrotors based on dynamic manipulability and the maximum translational acceleration. CCA 2015: 774-779 - [c47]Tatsuya Ibuki, Mitsuji Sampei, Atsuto Ishikawa, Shigeki Nakaura:
Jumping motion control for 4-link robot based on virtual constraint on underactuated joint. ASCC 2015: 1-6 - [c46]Tatsuya Ibuki, Yasuhiro Awai, Yoshihiro Sakayanagi, Mitsuji Sampei, Junichi Kako:
Knocking detection in gasoline engines based on probability density functions: A mixed Gaussian distribution approach. CDC 2015: 191-196 - [c45]Yuki Katsuyama, Tatsuya Ibuki, Kazuma Sekiguchi, Mitsuji Sampei:
Attitude controllability analysis of an underactuated satellite with two reaction wheels and its control. CDC 2015: 3421-3426 - [c44]Shunsuke Kimura, Hisakazu Nakamura, Tatsuya Ibuki, Mitsuji Sampei:
Revived Transformation for nonlinear systems subject to state constraints. CDC 2015: 7554-7559 - 2013
- [j7]Takuya Shoji, Shunsuke Katsumata, Shigeki Nakaura, Mitsuji Sampei:
Throwing Motion Control of the Springed Pendubot. IEEE Trans. Control. Syst. Technol. 21(3): 950-957 (2013) - [c43]Kazuma Sekiguchi, Mitsuji Sampei:
Multi-step procedure for orbital feedback linearization of multi-input control affine systems. ACC 2013: 1802-1809 - [c42]Yuki Iguchi, Kazuma Sekiguchi, Mitsuji Sampei:
Stability analysis of symmetrical two-route traffic flow with feedback information delay. ASCC 2013: 1-6 - [c41]Yasuyuki Kataoka, Kazuma Sekiguchi, Mitsuji Sampei:
Circle motion control of Trirotor UAV via discrete output zeroing. CDC 2013: 226-231 - [c40]Daichi Kato, Kazuma Sekiguchi, Mitsuji Sampei:
Controllability measure for nonlinear systems in complex region. CDC 2013: 4686-4692 - [c39]Kazuma Sekiguchi, Mitsuji Sampei:
On Multi Time-Scale Form of Nonlinear Systems. NOLCOS 2013: 524-529 - 2012
- [c38]Kazuma Sekiguchi, Mitsuji Sampei:
Change of controller based on partial feedback linearization with time-varying function. CDC 2012: 3557-3563 - 2011
- [c37]Kouhei Tahara, Masao Kanazawa, Kazuma Sekiguchi, Mitsuji Sampei:
Experiments of inverse optimal control problem for inverted pendulum with horizontal and vertical inputs. CDC/ECC 2011: 284-289 - [c36]Takuya Shoji, Kazuma Sekiguchi, Mitsuji Sampei:
Throwing motion control of the Pendubot and instability analysis of the zero dynamics. CDC/ECC 2011: 2849-2855 - 2010
- [c35]Kazuma Sekiguchi, Mitsuji Sampei:
Series Expression of the System for Linear Approximation based on Relative Degree Structure Stabilization of the Cart Pendulum System. CCA 2010: 1427-1432 - [c34]Kazuma Sekiguchi, Kouhei Tahara, Mitsuji Sampei:
Experimental Study of Stabilization of the Inverted Pendulum with Horizontal and Vertical Movement via Exact Linearization based on the Dynamic Extension. CCA 2010: 1433-1438 - [c33]Takuya Shoji, Shigeki Nakaura, Mitsuji Sampei:
Throwing Motion Control of the Springed Pendubot via Unstable Zero Dynamics. CCA 2010: 1602-1607 - [c32]Akio Saito, Kazuma Sekiguchi, Mitsuji Sampei:
Exact linearization by time scale transformation based on relative degree structure of single-input nonlinear systems. CDC 2010: 5408-5413 - [c31]Keisuke Nakamura, Shigeki Nakaura, Mitsuji Sampei:
Control of bipedal running by the angular-momentum-based synchronization structure. ICRA 2010: 3310-3315 - [c30]Uwe Mettin, Anton S. Shiriaev, Leonid B. Freidovich, Mitsuji Sampei:
Optimal ball pitching with an underactuated model of a human arm. ICRA 2010: 5009-5014
2000 – 2009
- 2009
- [c29]Shunsuke Katsumata, Shigenori Ichinose, Takuya Shoji, Shigeki Nakaura, Mitsuji Sampei:
Throwing motion control based on output zeroing utilizing 2-link underactuated arm. ACC 2009: 3057-3064 - [c28]Masao Kanazawa, Shigeki Nakaura, Mitsuji Sampei:
Inverse optimal control problem for bilinear systems: Application to the inverted pendulum with horizontal and vertical movement. CDC 2009: 2260-2267 - [c27]Jumpei Nishizaki, Shigeki Nakaura, Mitsuji Sampei:
Modeling and control of hula-hoop system. CDC 2009: 4125-4130 - [c26]Tsubasa Numata, Shigeki Nakaura, Mitsuji Sampei:
Casting motion controller for multilinked manipulator utilizing output zeroing. CDC 2009: 4402-4407 - 2008
- [c25]Yoshihiro Sakayanagi, Shigeki Nakaura, Mitsuji Sampei:
Conservativeness of State-Dependent Riccati Inequality : Effect of free parameters of State-Dependent Coefficient form. CDC 2008: 4147-4151 - [c24]Shimpei Isobe, Shigeki Nakaura, Mitsuji Sampei:
Continuous rolling motion control for theAcrobot composed of rounded links. CDC 2008: 4992-4997 - 2007
- [c23]Norikazu Itou, Shigeki Nakaura, Mitsuji Sampei:
Discontinuous controller designs for chained system by considering Time Scale Transformation. CDC 2007: 74-79 - [c22]Yohei Takahashi, Shigeki Nakaura, Mitsuji Sampei:
Position control of surface vessel with unknown disturbances. CDC 2007: 1673-1680 - [c21]Ryuichi Anami, Shigeki Nakaura, Mitsuji Sampei:
Swing up control for the acrobot considering compliance of high bar and energy interaction with each component. CDC 2007: 1929-1936 - [c20]Kohei Suseki, Shigeki Nakaura, Mitsuji Sampei:
The running control of humanoid robot utilizing Q-learning and output zeroing. CDC 2007: 5131-5137 - [c19]Ryuichi Anami, Masao Kanazawa, Shigeki Nakaura, Mitsuji Sampei:
Swing up control for acrobot with compliance of high bar focused on energy interaction with each component. IROS 2007: 3334-3341 - 2006
- [c18]Tsuyoshi Sagami, Mitsuji Sampei, Shigeki Nakaura:
Discontinuous Controller Design of the Chained Form System via Time State Control Form. CDC 2006: 3277-3282 - [c17]Toshikazu Shimizu, Shigeki Nakaura, Mitsuji Sampei:
The Control of a Bipedal Running Robot based on Output Zeroing considered Rotation of the Ankle Joint. CDC 2006: 6456-6461 - 2004
- [j6]Hisashi Date, Mitsuji Sampei, Masato Ishikawa, Masanobu Koga:
Simultaneous control of position and orientation for ball-plate manipulation problem based on time-State control form. IEEE Trans. Robotics 20(3): 465-480 (2004) - 2003
- [j5]Son Kuswadi, Aki Ohnishi, Akiko Takahashi, Mitsuji Sampei, Shigeki Nakaura:
A one linear actuator hopping robot: modeling and control. Adv. Robotics 17(8): 709-737 (2003) - [j4]Son Kuswadi, Mitsuji Sampei, Shigeki Nakaura:
Adaptive Fuzzy Control of One Linear Actuator Hopping Robot. J. Adv. Comput. Intell. Intell. Informatics 7(2): 92-100 (2003) - [c16]Mitsuji Sampei, Jinglai Shen, N. Harris McClamroch:
Nonlinear control of the air spindle testbed with constraints. ACC 2003: 483-488 - [c15]Yasuyuki Kawaida, Shigeki Nakaura, Ryusuke Ohata, Mitsuji Sampei:
Feedback control of enduring rotary motion of devil stick. CDC 2003: 3396-3401 - [c14]Son Kuswadi, Mitsuji Sampei, Shigeki Nakaura:
Model reference adaptive fuzzy control for one linear actuator hopping robot. FUZZ-IEEE 2003: 254-259 - [c13]Toshiro Yamanaka, Shigeki Nakaura, Mitsuji Sampei:
Hopping motion analysis of 'superball'-like spherical robot based on feedback control. IROS 2003: 3805-3810 - 2002
- [c12]Shigeki Nakaura, Tasuku Hoshino, Katsuhisa Furuta, Mitsuji Sampei:
Milling operation as following the unknown boundary using cutting force information. ACC 2002: 4080-4085 - [c11]Son Kuswadi, Akiko Takahashi, Aki Ohnishi, Mitsuji Sampei, Shigeki Nakaura:
Feedback error learning control using adaptive fuzzy network to control one linear actuator hopping robot. APCCAS (2) 2002: 37-41 - [c10]Son Kuswadi, Mitsuji Sampei, Shigeki Nakaura:
One Linear Actuator Hopping Robot Control using Adaptive Fuzzy Controller. FSKD 2002: 141- - [c9]Napoleon, Shigeki Nakaura, Mitsuji Sampei:
Balance control analysis of humanoid robot based on ZMP feedback control. IROS 2002: 2437-2442 - 2001
- [j3]Masahiro Miyazaki, Mitsuji Sampei, Masanobu Koga:
Control of the motion of an acrobot approaching a horizontal bar. Adv. Robotics 15(4): 467-480 (2001) - [c8]Hisashi Date, Yoshikatsu Hoshi, Mitsuji Sampei, Shigeki Nakaura:
Locomotion control of a snake robot with constraint force attenuation. ACC 2001: 113-118 - 2000
- [c7]Masahiro Miyazaki, Mitsuji Sampei, Masanobu Koga, Akiko Takahashi:
A control of underactuated hopping gait systems: acrobot example. CDC 2000: 4797-4802 - [c6]Masato Ishikawa, Mitsuji Sampei:
Classification of nonholonomic systems from mechanical and control-theoretical viewpoints. IROS 2000: 121-126 - [c5]Hisashi Date, Yoshikatsu Hoshi, Mitsuji Sampei:
Locomotion control of a snake-like robot based on dynamic manipulability. IROS 2000: 2236-2241
1990 – 1999
- 1995
- [j2]Mitsuji Sampei, Takeshi Tamura, Tadaharu Kobayashi, Nobuhiro Shibui:
Arbitrary path tracking control of articulated vehicles using nonlinear control theory. IEEE Trans. Control. Syst. Technol. 3(1): 125-131 (1995) - [c4]Masato Ishikawa, Mitsuji Sampei:
State Estimation of Non-Holonomic Mobile Robots Using. ICRA 1995: 1379-1384 - 1991
- [c3]Mitsuji Sampei, Takeshi Tamura, Takeshi Itoh, Matsuroh Nakamichi:
Path tracking control of trailer-like mobile robot. IROS 1991: 193-198
1980 – 1989
- 1989
- [c2]Behrouz Homayoun Far, Takeshi Itoh, Mitsuji Sampei, Matsuroh Nakamichi:
Cognitive Collision Prediction & Path Planning Of Mobile Robots: A Qualitative Approach. IROS 1989: 316-322 - 1988
- [j1]Mitsuji Sampei, Katsuhisa Furuta:
Robot control in the neighborhood of singular points. IEEE J. Robotics Autom. 4(3): 303-309 (1988) - 1987
- [c1]Mitsuji Sampei, Katsuhisa Furuta:
Robot control in the neighborhood of singular points. ICRA 1987: 1696-1700
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-12 22:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint