default search action
Gagan Agrawal
Person information
- affiliation: Ohio State University, Columbus, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c280]Wei Niu, Gagan Agrawal, Bin Ren:
SoD2: Statically Optimizing Dynamic Deep Neural Network Execution. ASPLOS (1) 2024: 386-400 - [c279]Wei Niu, Md. Musfiqur Rahman Sanim, Zhihao Shu, Jiexiong Guan, Xipeng Shen, Miao Yin, Gagan Agrawal, Bin Ren:
SmartMem: Layout Transformation Elimination and Adaptation for Efficient DNN Execution on Mobile. ASPLOS (3) 2024: 916-931 - [c278]Gagan Agrawal, Alba Cristina Melo:
Message from the 2024 General Co-chairs. IPDPS (Workshops) 2024: xxviii-xxix - [c277]Mahdieh Heidaripour, Ladan Kian, Maryam Rezapour, Mark Holcomb, Benjamin Fuller, Gagan Agrawal, Hoda Maleki:
Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption. SECRYPT 2024: 459-466 - [i11]Wei Niu, Gagan Agrawal, Bin Ren:
SoD2: Statically Optimizing Dynamic Deep Neural Network. CoRR abs/2403.00176 (2024) - [i10]Wei Niu, Md. Musfiqur Rahman Sanim, Zhihao Shu, Jiexiong Guan, Xipeng Shen, Miao Yin, Gagan Agrawal, Bin Ren:
SmartMem: Layout Transformation Elimination and Adaptation for Efficient DNN Execution on Mobile. CoRR abs/2404.13528 (2024) - [i9]Mahdieh Heidaripour, Ladan Kian, Maryam Rezapour, Mark Holcomb, Benjamin Fuller, Gagan Agrawal, Hoda Maleki:
Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption. IACR Cryptol. ePrint Arch. 2024: 635 (2024) - 2023
- [c276]Xiang Li, Gagan Agrawal, Ruoming Jin, Rajiv Ramnath:
Scalable Deep Metric Learning on Attributed Graphs. CSoNet 2023: 385-397 - [c275]Braxton Bolt, Hoda Maleki, Gagan Agrawal, Jeffrey D. Morris, Khan Farabi:
SecFob: A Remote Keyless Entry Security Solution. ISC2 2023: 1-7 - [c274]Yang Xia, Peng Jiang, Gagan Agrawal, Rajiv Ramnath:
End-to-End LU Factorization of Large Matrices on GPUs. PPoPP 2023: 288-300 - [c273]Asma Jodeiri Akbarfam, Mahdieh Heidaripour, Hoda Maleki, Gokila Dorai, Gagan Agrawal:
ForensiBlock: A Provenance-Driven Blockchain Framework for Data Forensics and Auditability. TPS-ISA 2023: 136-145 - [i8]Asma Jodeiri Akbarfam, Mahdieh Heidaripour, Hoda Maleki, Gokila Dorai, Gagan Agrawal:
ForensiBlock: A Provenance-Driven Blockchain Framework for Data Forensics and Auditability. CoRR abs/2308.03927 (2023) - 2022
- [c272]Haoyuan Xing, Gagan Agrawal, Rajiv Ramnath:
GPU Adaptive In-situ Parallel Analytics (GAP). PACT 2022: 467-480 - [c271]Xiang Li, Dong Li, Ruoming Jin, Rajiv Ramnath, Gagan Agrawal:
Deep Graph Clustering with Random-walk based Scalable Learning. ASONAM 2022: 88-95 - [c270]Md Hasan, Hoda Maleki, Gagan Agrawal:
Securing Pseudonym Schemes for Vehicular Privacy. IEEE Big Data 2022: 6647-6649 - [c269]Yang Xia, Peng Jiang, Gagan Agrawal, Rajiv Ramnath:
Scaling and Selecting GPU Methods for All Pairs Shortest Paths (APSP) Computations. IPDPS 2022: 190-200 - [c268]Wei Niu, Jiexiong Guan, Xipeng Shen, Yanzhi Wang, Gagan Agrawal, Bin Ren:
GCD2: A Globally Optimizing Compiler for Mapping DNNs to Mobile DSPs. MICRO 2022: 512-529 - 2021
- [c267]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Constraint-embedded paraphrase generation for commercial tweets. ASONAM 2021: 369-376 - [c266]Dane Troyer, Justin Henry, Hoda Maleki, Gokila Dorai, Bethany Sumner, Gagan Agrawal, Jon Ingram:
Privacy-Preserving Framework to Facilitate Shared Data Access for Wearable Devices. IEEE BigData 2021: 2583-2592 - [c265]Jia Guo, Radu Teodorescu, Gagan Agrawal:
Fused DSConv: Optimizing Sparse CNN Inference for Execution on Edge Devices. CCGRID 2021: 545-554 - [c264]Xiang Li, Ruoming Jin, Rajiv Ramnath, Gagan Agrawal:
A Framework for Accelerating Graph Convolutional Networks on Massive Datasets. CSoNet 2021: 79-92 - [c263]Xiang Li, Gagan Agrawal:
Shrinking Sample Search Algorithm for Automatic Tuning of GPU Kernels. HiPC 2021: 262-271 - [c262]Shuangsheng Lou, Gagan Agrawal:
A Programming API Implementation for Secure Data Analytics Applications with Homomorphic Encryption on GPUs. HiPC 2021: 418-423 - [c261]Jia Guo, Radu Teodorescu, Gagan Agrawal:
A Fused Inference Design for Pattern-Based Sparse CNN on Edge Devices. HiPC 2021: 424-429 - [c260]Shuangsheng Lou, Gagan Agrawal:
Mapping IoT Applications on the Edge to Cloud Continuum with a Filter Stream Model. ICFEC 2021: 61-65 - [c259]Yang Xia, Peng Jiang, Gagan Agrawal, Rajiv Ramnath:
Scaling Sparse Matrix Multiplication on CPU-GPU Nodes. IPDPS 2021: 392-401 - [c258]Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, Bin Ren:
DNNFusion: accelerating deep neural networks execution with advanced operator fusion. PLDI 2021: 883-898 - [c257]Gangyi Zhu, Gagan Agrawal:
Sampling-based Sparse Format Selection on GPUs. SBAC-PAD 2021: 198-208 - [c256]Shuangsheng Lou, Nisha Panwar, Gagan Agrawal:
Integrity Verification for Streaming IoT Applications with a Minimalist Logging Scheme. SMARTCOMP 2021: 197-202 - [i7]Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, Bin Ren:
DNNFusion: Accelerating Deep Neural Networks Execution with Advanced Operator Fusion. CoRR abs/2108.13342 (2021) - [i6]Xiang Li, Dong Li, Ruoming Jin, Gagan Agrawal, Rajiv Ramnath:
Scalable Deep Graph Clustering with Random-walk based Self-supervised Learning. CoRR abs/2112.15530 (2021) - 2020
- [j35]Roee Ebenstein, Gagan Agrawal:
DistriPlan: an optimized join execution framework for geo-distributed scientific data. Distributed Parallel Databases 38(1): 127-152 (2020) - [j34]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Tweets can tell: activity recognition using hybrid gated recurrent neural networks. Soc. Netw. Anal. Min. 10(1): 16 (2020) - [j33]Peng Jiang, Yang Xia, Gagan Agrawal:
Combining SIMD and Many/Multi-core Parallelism for Finite-state Machines with Enumerative Speculation. ACM Trans. Parallel Comput. 7(3): 15:1-15:26 (2020) - [c255]Jia Guo, Radu Teodorescu, Gagan Agrawal:
A Pattern-Based API for Mapping Applications to a Hierarchy of Multi-Core Devices. CCGRID 2020: 11-20 - [c254]Ruoming Jin, Zhen Peng, Wendell Wu, Feodor F. Dragan, Gagan Agrawal, Bin Ren:
Parallelizing pruned landmark labeling: dealing with dependencies in graph algorithms. ICS 2020: 11:1-11:13 - [c253]Jia Guo, Gagan Agrawal:
Smart Streaming: A High-Throughput Fault-tolerant Online Processing System. IPDPS Workshops 2020: 396-405 - [c252]Yang Xia, Peng Jiang, Gagan Agrawal:
Scaling out speculative execution of finite-state machines with parallel merge. PPoPP 2020: 160-172 - [c251]Peng Jiang, Changwan Hong, Gagan Agrawal:
A novel data transformation and execution strategy for accelerating sparse matrix multiplication on GPUs. PPoPP 2020: 376-388 - [c250]Haoyuan Xing, Gagan Agrawal, Rajiv Ramnath:
MoHA: a composable system for efficient in-situ analytics on heterogeneous HPC systems. SC 2020: 82 - [i5]Peng Jiang, Gagan Agrawal:
Adaptive Periodic Averaging: A Practical Approach to Reducing Communication in Distributed Learning. CoRR abs/2007.06134 (2020)
2010 – 2019
- 2019
- [c249]Gangyi Zhu, Peng Jiang, Gagan Agrawal:
A Methodology for Characterizing Sparse Datasets and Its Application to SIMD Performance Prediction. PACT 2019: 445-456 - [c248]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Tweets can tell: activity recognition using hybrid long short-term memory model. ASONAM 2019: 164-167 - [c247]Yang Xia, Peng Jiang, Gagan Agrawal:
Enabling prefix sum parallelism pattern for recurrences with principled function reconstruction. CC 2019: 17-28 - [c246]Peng Jiang, Gagan Agrawal:
Accelerating distributed stochastic gradient descent with adaptive periodic parameter averaging: poster. PPoPP 2019: 403-404 - [c245]Haoyuan Xing, Gagan Agrawal:
Accelerating array joining with integrated value-index. SSDBM 2019: 145-156 - [i4]Ruoming Jin, Zhen Peng, Wendell Wu, Feodor F. Dragan, Gagan Agrawal, Bin Ren:
Pruned Landmark Labeling Meets Vertex Centric Computation: A Surprisingly Happy Marriage! CoRR abs/1906.12018 (2019) - [i3]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Tweets Can Tell: Activity Recognition using Hybrid Long Short-Term Memory Model. CoRR abs/1908.02551 (2019) - [i2]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Towards Successful Social Media Advertising: Predicting the Influence of Commercial Tweets. CoRR abs/1910.12446 (2019) - 2018
- [c244]Peng Jiang, Linchuan Chen, Gagan Agrawal:
Revealing parallel scans and reductions in recurrences through function reconstruction. PACT 2018: 10:1-10:13 - [c243]Peng Jiang, Gagan Agrawal:
Conflict-free vectorization of associative irregular applications with recent SIMD architectural advances. CGO 2018: 175-187 - [c242]Roee Ebenstein, Gagan Agrawal, Jiali Wang, Joshua M. Boley, Rajkumar Kettimuthu:
FDQ: Advance Analytics Over Real Scientific Array Datasets. eScience 2018: 453-463 - [c241]Muhammed Emin Ozturk, Marissa Renardy, Yukun Li, Gagan Agrawal, Ching-Shan Chou:
A Novel Approach for Handling Soft Error in Conjugate Gradients. HiPC 2018: 193-202 - [c240]Gangyi Zhu, Gagan Agrawal:
A Performance Prediction Framework for Irregular Applications. HiPC 2018: 304-313 - [c239]Jia Guo, Gagan Agrawal:
Achieving Performance and Programmability for MapReduce(-Like) Frameworks. HiPC 2018: 314-323 - [c238]Peng Jiang, Gagan Agrawal:
A Linear Speedup Analysis of Distributed Deep Learning with Sparse and Quantized Communication. NeurIPS 2018: 2530-2541 - [c237]Peng Jiang, Gagan Agrawal:
Revealing parallel scans and reductions in sequential loops through function reconstruction. PPoPP 2018: 395-396 - [c236]Haoyuan Xing, Gagan Agrawal:
COMPASS: compact array storage with value index. SSDBM 2018: 7:1-7:12 - 2017
- [c235]Jiaqi Liu, Gagan Agrawal:
Supporting Fault-Tolerance in Presence of In-Situ Analytics. CCGrid 2017: 304-313 - [c234]Peng Jiang, Gagan Agrawal:
Efficient SIMD and MIMD parallelization of hash-based aggregation by conflict mitigation. ICS 2017: 24:1-24:11 - [c233]Mücahid Kutlu, Gagan Agrawal, James S. Blachly:
Par-eXpress: A Tool for Analysis of Sequencing Experiments With Ambiguous Assignment of Fragments in Parallel. IPDPS Workshops 2017: 303-310 - [c232]Peng Jiang, Gagan Agrawal:
Combining SIMD and Many/Multi-core Parallelism for Finite State Machines with Enumerative Speculation. PPoPP 2017: 179-191 - [c231]Roee Ebenstein, Gagan Agrawal:
DistriPlan: An Optimized Join Execution Framework for Geo-Distributed Scientific Data. SSDBM 2017: 25:1-25:6 - 2016
- [j32]Mehmet Can Kurt, Sriram Krishnamoorthy, Gagan Agrawal, Bin Ren:
User-Assisted Store Recycling for Dynamic Task Graph Schedulers. ACM Trans. Archit. Code Optim. 13(4): 55:1-55:24 (2016) - [c230]Linchuan Chen, Peng Jiang, Gagan Agrawal:
Exploiting recent SIMD architectural advances for irregular applications. CGO 2016: 47-58 - [c229]David Siegal, Jia Guo, Gagan Agrawal:
Smart-MLlib: A High-Performance Machine-Learning Library. CLUSTER 2016: 336-345 - [c228]Jiaqi Liu, Gagan Agrawal:
Soft Error Detection for Iterative Applications Using Offline Training. HiPC 2016: 2-11 - [c227]Sameh Shohdy, Abhinav Vishnu, Gagan Agrawal:
Fault Tolerant Frequent Pattern Mining. HiPC 2016: 12-21 - [c226]Renhao Cui, Gagan Agrawal, Rajiv Ramnath, Vinh Ngoc Khuc:
Ensemble of Heterogeneous Classifiers for Improving Automated Tweet Classification. ICDM Workshops 2016: 1045-1052 - [c225]Sameh Shohdy, Abhinav Vishnu, Gagan Agrawal:
Fault Tolerant Support Vector Machines. ICPP 2016: 598-607 - [c224]Peng Jiang, Linchuan Chen, Gagan Agrawal:
Reusing Data Reorganization for Efficient SIMD Parallelization of Adaptive Irregular Applications. ICS 2016: 16:1-16:10 - [c223]Rajkumar Kettimuthu, Gagan Agrawal, P. Sadayappan, Ian T. Foster:
Differentiated Scheduling of Response-Critical and Best-Effort Wide-Area Data Transfers. IPDPS 2016: 1113-1122 - [c222]Mehmet Can Kurt, Bin Ren, Sriram Krishnamoorthy, Gagan Agrawal:
User-assisted storage reuse determination for dynamic task graphs. PPoPP 2016: 54:1-54:2 - [i1]Sameh Shohdy, Abhinav Vishnu, Gagan Agrawal:
Fault Tolerant Frequent Pattern Mining. CoRR abs/1610.05116 (2016) - 2015
- [c221]Roee Ebenstein, Gagan Agrawal:
DSDQuery DSI - Querying scientific data repositories with structured operators. IEEE BigData 2015: 485-492 - [c220]Manirupa Das, Renhao Cui, David R. Campbell, Gagan Agrawal, Rajiv Ramnath:
Towards methods for systematic research on big data. IEEE BigData 2015: 2072-2081 - [c219]Jiaqi Liu, Mehmet Can Kurt, Gagan Agrawal:
A Practical Approach for Handling Soft Errors in Iterative Applications. CLUSTER 2015: 158-161 - [c218]Mücahid Kutlu, Gagan Agrawal:
RE-PAGE: Domain-Specific REplication and PArallel Processing of GEnomic Data. CLUSTER 2015: 332-341 - [c217]Tekin Bicer, Doga Gürsoy, Rajkumar Kettimuthu, Francesco De Carlo, Gagan Agrawal, Ian T. Foster:
Rapid Tomographic Image Reconstruction via Large-Scale Parallelization. Euro-Par 2015: 289-302 - [c216]Sameh Shohdy, Yu Su, Gagan Agrawal:
Load Balancing and Accelerating Parallel Spatial Join Operations Using Bitmap Indexing. HiPC 2015: 396-405 - [c215]Jiaqi Liu, Gagan Agrawal:
Algorithm Level Fault Tolerance for Molecular Dynamic Applications. HiPC 2015: 406-415 - [c214]Yu Su, Yi Wang, Gagan Agrawal:
In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps. HPDC 2015: 61-72 - [c213]Mücahid Kutlu, Gagan Agrawal:
GEM: A Framework for Developing Shared-Memory Parallel Genomic Applications on Memory Constrained Architectures. ICPP 2015: 829-838 - [c212]Linchuan Chen, Xin Huo, Gagan Agrawal:
A Pattern Specification and Optimizations Framework for Accelerating Scientific Computations on Heterogeneous Clusters. IPDPS 2015: 591-600 - [c211]Linchuan Chen, Xin Huo, Bin Ren, Surabhi Jain, Gagan Agrawal:
Efficient and Simplified Parallel Graph Processing over CPU and MIC. IPDPS 2015: 819-828 - [c210]Mehmet Can Kurt, Bin Ren, Gagan Agrawal:
Low-Overhead Fault-Tolerance Support Using DISC Programming Model. LCPC 2015: 20-36 - [c209]Bin Ren, Nishkam Ravi, Yi Yang, Min Feng, Gagan Agrawal, Srimat T. Chakradhar:
Automatic and Efficient Data Host-Device Communication for Many-Core Coprocessors. LCPC 2015: 173-190 - [c208]Yi Wang, Linchuan Chen, Gagan Agrawal:
Supporting online analytics with user-defined estimation and early termination in a MapReduce-like framework. DISCS@SC 2015: 8:1-8:8 - [c207]Rajkumar Kettimuthu, Gayane Vardoyan, Gagan Agrawal, P. Sadayappan, Ian T. Foster:
An elegant sufficiency: load-aware differentiated scheduling of data transfers. SC 2015: 46:1-46:12 - [c206]Yi Wang, Gagan Agrawal, Tekin Bicer, Wei Jiang:
Smart: a MapReduce-like framework for in-situ scientific analytics. SC 2015: 51:1-51:12 - [c205]Yi Wang, Yu Su, Gagan Agrawal:
A novel approach for approximate aggregations over arrays. SSDBM 2015: 4:1-4:12 - [c204]Gangyi Zhu, Yi Wang, Gagan Agrawal:
SciCSM: novel contrast set mining over scientific datasets using bitmap indices. SSDBM 2015: 38:1-38:6 - 2014
- [j31]Yu Su, Gagan Agrawal, Jonathan Woodring, Kary L. Myers, Joanne Wendelberger, James P. Ahrens:
Effective and efficient data sampling using bitmap indices. Clust. Comput. 17(4): 1081-1100 (2014) - [j30]Bin Ren, Todd Mytkowicz, Gagan Agrawal:
A Portable Optimization Engine for Accelerating Irregular Data-Traversal Applications on SIMD Architectures. ACM Trans. Archit. Code Optim. 11(2): 16:1-16:31 (2014) - [j29]Mai Zheng, Vignesh T. Ravi, Feng Qin, Gagan Agrawal:
GMRace: Detecting Data Races in GPU Programs via a Low-Overhead Scheme. IEEE Trans. Parallel Distributed Syst. 25(1): 104-115 (2014) - [c203]Tekin Bicer, Jian Yin, Gagan Agrawal:
Improving I/O Throughput of Scientific Applications Using Transparent Parallel Compression. CCGRID 2014: 1-10 - [c202]Rajkumar Kettimuthu, Gayane Vardoyan, Gagan Agrawal, P. Sadayappan:
Modeling and Optimizing Large-Scale Wide-Area Data Transfers. CCGRID 2014: 196-205 - [c201]Mücahid Kutlu, Gagan Agrawal:
Cluster-Based SNP Calling on Large-Scale Genome Sequencing Data. CCGRID 2014: 455-464 - [c200]Yu Su, Gagan Agrawal, Jonathan Woodring, Ayan Biswas, Han-Wei Shen:
Supporting correlation analysis on scientific datasets in parallel and distributed settings. HPDC 2014: 191-202 - [c199]Bin Ren, Nishkam Ravi, Yi Yang, Min Feng, Gagan Agrawal, Srimat T. Chakradhar:
Automating and optimizing data transfers for many-core coprocessors. ICS 2014: 177 - [c198]Xin Huo, Bin Ren, Gagan Agrawal:
A programming system for xeon phis with runtime SIMD parallelization. ICS 2014: 283-292 - [c197]Linchuan Chen, Xin Huo, Gagan Agrawal:
Scheduling Methods for Accelerating Applications on Architectures with Heterogeneous Cores. IPDPS Workshops 2014: 48-57 - [c196]Mücahid Kutlu, Gagan Agrawal:
PAGE: A Framework for Easy PArallelization of GEnomic Applications. IPDPS 2014: 72-81 - [c195]Yi Wang, Gagan Agrawal, Hatice Gulcin Ozer, Kun Huang:
Removing Sequential Bottlenecks in Analysis of Next-Generation Sequencing Data. IPDPS Workshops 2014: 508-517 - [c194]Mehmet Can Kurt, Sriram Krishnamoorthy, Kunal Agrawal, Gagan Agrawal:
Fault-Tolerant Dynamic Task Graph Scheduling. SC 2014: 719-730 - [c193]Mehmet Can Kurt, Gagan Agrawal:
DISC: A Domain-Interaction Based Programming Model with Support for Heterogeneous Execution. SC 2014: 869-880 - [c192]Yi Wang, Arnab Nandi, Gagan Agrawal:
SAGA: array storage as a DB with support for structural aggregations. SSDBM 2014: 9:1-9:12 - [p2]Victor E. Lee, Ruoming Jin, Gagan Agrawal:
Frequent Pattern Mining in Data Streams. Frequent Pattern Mining 2014: 199-224 - 2013
- [j28]Wenjing Ma, Sriram Krishnamoorthy, Oreste Villa, Karol Kowalski, Gagan Agrawal:
Optimizing tensor contraction expressions for hybrid CPU-GPU execution. Clust. Comput. 16(1): 131-155 (2013) - [j27]Vignesh T. Ravi, Michela Becchi, Wei Jiang, Gagan Agrawal, Srimat T. Chakradhar:
Scheduling concurrent applications on a cluster of CPU-GPU nodes. Future Gener. Comput. Syst. 29(8): 2262-2271 (2013) - [j26]David Chiu, Gagan Agrawal:
Cost and Accuracy Aware Scientific Workflow Composition for Service-Oriented Environments. IEEE Trans. Serv. Comput. 6(4): 470-483 (2013) - [c191]Yi Wang, Yu Su, Gagan Agrawal:
Supporting a Light-Weight Data Management Layer over HDF5. CCGRID 2013: 335-342 - [c190]Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, Wolfram Schulte:
SIMD parallelization of applications that traverse irregular data structures. CGO 2013: 20:1-20:10 - [c189]Yu Su, Gagan Agrawal, Jonathan Woodring, Kary L. Myers, Joanne Wendelberger, James P. Ahrens:
Taming massive distributed datasets: data sampling using bitmap indices. HPDC 2013: 13-24 - [c188]Xin Huo, Sriram Krishnamoorthy, Gagan Agrawal:
Efficient scheduling of recursive control flow on GPUs. ICS 2013: 409-420 - [c187]Tekin Bicer, Jian Yin, David Chiu, Gagan Agrawal, Karen Schuchardt:
Integrating Online Compression to Accelerate Large-Scale Data Analytics Applications. IPDPS 2013: 1205-1216 - [c186]Tekin Bicer, Gagan Agrawal:
A Compression Framework for Multidimensional Scientific Datasets. IPDPS Workshops 2013: 2250-2253 - [c185]Yu Su, Yi Wang, Gagan Agrawal, Rajkumar Kettimuthu:
SDQuery DSI: integrating data management support with a wide area data transfer protocol. SC 2013: 47:1-47:12 - 2012
- [j25]Vignesh T. Ravi, Wenjing Ma, David Chiu, Gagan Agrawal:
Compiler and runtime support for enabling reduction computations on heterogeneous systems. Concurr. Comput. Pract. Exp. 24(5): 463-480 (2012) - [j24]Tantan Liu, Fan Wang, Gagan Agrawal:
Stratified sampling for data mining on the deep web. Frontiers Comput. Sci. 6(2): 179-196 (2012) - [j23]Qian Zhu, Gagan Agrawal:
Resource Provisioning with Budget Constraints for Adaptive Applications in Cloud Environments. IEEE Trans. Serv. Comput. 5(4): 497-511 (2012) - [c184]Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, Wolfram Schulte:
Fine-grained parallel traversals of irregular data structures. PACT 2012: 461-462 - [c183]Vignesh T. Ravi, Michela Becchi, Wei Jiang, Gagan Agrawal, Srimat T. Chakradhar:
Scheduling Concurrent Applications on a Cluster of CPU-GPU Nodes. CCGRID 2012: 140-147 - [c182]Yu Su, Gagan Agrawal:
Supporting User-Defined Subsetting and Aggregation over Parallel NetCDF Datasets. CCGRID 2012: 212-219 - [c181]Yi Wang, Wei Jiang, Gagan Agrawal:
SciMATE: A Novel MapReduce-Like Framework for Multiple Scientific Data Formats. CCGRID 2012: 443-450 - [c180]Tekin Bicer, David Chiu, Gagan Agrawal:
Time and Cost Sensitive Data-Intensive Computing on Hybrid Clouds. CCGRID 2012: 636-643 - [c179]Wenjing Ma, Sriram Krishnamoorthy, Gagan Agrawal:
Parameterized micro-benchmarking: an auto-tuning approach for complex applications. Conf. Computing Frontiers 2012: 213-222 - [c178]Mehmet Can Kurt, Gagan Agrawal:
A fault-tolerant environment for large-scale query processing. HiPC 2012: 1-10 - [c177]Mücahid Kutlu, Gagan Agrawal, Oguz Kurt:
Fault tolerant parallel data-intensive algorithms. HiPC 2012: 1-10 - [c176]Mai Zheng, Vignesh T. Ravi, Wenjing Ma, Feng Qin, Gagan Agrawal:
GMProf: A low-overhead, fine-grained profiling approach for GPU programs. HiPC 2012: 1-10 - [c175]Mücahid Kutlu, Gagan Agrawal, Oguz Kurt:
Fault tolerant parallel data-intensive algorithms. HPDC 2012: 133-134 - [c174]Linchuan Chen, Gagan Agrawal:
Optimizing MapReduce for GPUs with effective shared memory usage. HPDC 2012: 199-210 - [c173]Yu Su, Gagan Agrawal, Jonathan Woodring:
Indexing and Parallel Query Processing Support for Visualizing Climate Datasets. ICPP 2012: 249-258 - [c172]Wei Jiang, Gagan Agrawal:
MATE-CG: A Map Reduce-Like Framework for Accelerating Data-Intensive Computations on Heterogeneous Clusters. IPDPS 2012: 644-655 - [c171]Tantan Liu, Gagan Agrawal:
Stratified k-means clustering over a deep web data source. KDD 2012: 1113-1121 - [c170]Linchuan Chen, Xin Huo, Gagan Agrawal:
Accelerating MapReduce on a coupled CPU-GPU architecture. SC 2012: 25 - [c169]Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, Srimat T. Chakradhar:
ValuePack: value-based scheduling framework for CPU-GPU clusters. SC 2012: 53 - [c168]Gagan Agrawal, Yu Su:
Light-Weight Data Management Solutions for Visualization and Dissemination of Massive Scientific Datasets - Position Paper. SC Companion 2012: 1296-1300 - [c167]Tantan Liu, Gagan Agrawal:
Stratification Based Hierarchical Clustering Over a Deep Web Data Source. SDM 2012: 70-81 - 2011
- [j22]David Chiu, Travis Hall, Farhana Kabir, Apeksha Shetty, Gagan Agrawal:
Analyzing Costs and Optimizations for an Elastic Key-Value Store on Amazon Web Services. Int. J. Next Gener. Comput. 2(2) (2011) - [c166]Bin Ren, Gagan Agrawal:
Compiling Dynamic Data Structures in Python to Enable the Use of Multi-core and Many-core Libraries. PACT 2011: 68-77 - [c165]Wenjing Ma, Sriram Krishnamoorthy, Gagan Agrawal:
Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications. PACT 2011: 181-182 - [c164]Wenjing Ma, Sriram Krishnamoorthy, Gagan Agrawal:
Practical Loop Transformations for Tensor Contraction Expressions on Multi-level Memory Hierarchies. CC 2011: 266-285 - [c163]David Chiu, Apeksha Shetty, Gagan Agrawal:
Evaluating and Optimizing Indexing Schemes for a Cloud-Based Elastic Key-Value Store. CCGRID 2011: 362-371 - [c162]Wei Jiang, Gagan Agrawal:
Ex-MATE: Data Intensive Computing with Large Reduction Objects and Its Application to Graph Mining. CCGRID 2011: 475-484 - [c161]Fan Wang, Gagan Agrawal:
Effective stratification for low selectivity queries on deep web data sources. CIKM 2011: 1455-1464 - [c160]Tekin Bicer, David Chiu, Gagan Agrawal:
A Framework for Data-Intensive Computing with Cloud Bursting. CLUSTER 2011: 169-177 - [c159]Ashish Nagavaram, Gagan Agrawal, Michael A. Freitas, Kelly H. Telu, Gaurang Mehta, Rajiv Mayani, Ewa Deelman:
A Cloud-based Dynamic Workflow for Mass Spectrometry Data Analysis. eScience 2011: 47-54 - [c158]Fan Wang, Gagan Agrawal:
Effective and efficient sampling methods for deep web aggregation queries. EDBT 2011: 425-436 - [c157]Aarthi Raveendran, Tekin Bicer, Gagan Agrawal:
An Autonomic Framework for Time and Cost Driven Execution of MPI Programs on Cloud Environments. GRID 2011: 218-219 - [c156]Xin Huo, Vignesh T. Ravi, Gagan Agrawal:
Porting irregular reductions on heterogeneous CPU-GPU configurations. HiPC 2011: 1-10 - [c155]Vignesh T. Ravi, Gagan Agrawal:
A dynamic scheduling framework for emerging heterogeneous systems. HiPC 2011: 1-10 - [c154]Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, Srimat T. Chakradhar:
Supporting GPU sharing in cloud environments with a transparent runtime consolidation framework. HPDC 2011: 217-228 - [c153]Fan Wang, Gagan Agrawal:
Answering Cross-Source Keyword Queries over Deep Web Data Sources. IC3 2011: 475-490 - [c152]Tantan Liu, Gagan Agrawal:
Active learning based frequent itemset mining over the deep web. ICDE 2011: 219-230 - [c151]Xin Huo, Vignesh T. Ravi, Wenjing Ma, Gagan Agrawal:
An execution strategy and optimized runtime support for parallelizing irregular reductions on modern GPUs. ICS 2011: 2-11 - [c150]Fan Wang, Gagan Agrawal:
Answering complex structured queries over the deep web. IDEAS 2011: 115-123 - [c149]David Chiu, Travis Hall, Farhana Kabir, Gagan Agrawal:
An approach towards automatic workflow composition through information retrieval. IDEAS 2011: 170-178 - [c148]Aarthi Raveendran, Tekin Bicer, Gagan Agrawal:
A Framework for Elastic Execution of Existing MPI Programs. IPDPS Workshops 2011: 940-947 - [c147]Bin Ren, Gagan Agrawal, Bradford L. Chamberlain, Steven J. Deitz:
Translating Chapel to Use FREERIDE: A Case Study in Using an HPC Language for Data-Intensive Computing. IPDPS Workshops 2011: 1242-1249 - [c146]Mai Zheng, Vignesh T. Ravi, Feng Qin, Gagan Agrawal:
GRace: a low-overhead mechanism for detecting data races in GPU programs. PPoPP 2011: 135-146 - [c145]Tekin Bicer, David Chiu, Gagan Agrawal:
Poster: a framework for data-intensive computing with cloud bursting. SC Companion 2011: 5-6 - [c144]Tekin Bicer, David Chiu, Gagan Agrawal:
MATE-EC2: a middleware for processing data with AWS. MTAGS@SC 2011: 59-68 - [c143]David Chiu, Travis Hall, Farhana Kabir, Gagan Agrawal:
Keyword Search Support for Automating Scientific Workflow Composition. SSDBM 2011: 571-572 - 2010
- [j21]Qian Zhu, Gagan Agrawal:
Supporting fault-tolerance for time-critical events in distributed environments. Sci. Program. 18(1): 51-76 (2010) - [c142]Wenjing Ma, Gagan Agrawal:
An integer programming framework for optimizing shared memory use on GPUs. PACT 2010: 553-554 - [c141]Fan Wang, Gagan Agrawal:
A Self-Healing Approach for a Domain-Specific Deep Web Search Tool. BIBE 2010: 20-25 - [c140]Tantan Liu, Fan Wang, Gagan Agrawal:
Instance Discovery and Schema Matching with Applications to Biological Deep Web Data Integration. BIBE 2010: 304-305 - [c139]Wei Jiang, Vignesh T. Ravi, Gagan Agrawal:
A Map-Reduce System with an Alternate API for Multi-core Environments. CCGRID 2010: 84-93 - [c138]Smita Vijayakumar, Qian Zhu, Gagan Agrawal:
Dynamic Resource Provisioning for Data Streaming Applications in a Cloud Environment. CloudCom 2010: 441-448 - [c137]Fan Wang, Gagan Agrawal:
Query Reuse Based Query Planning for Searches over the Deep Web. DEXA (2) 2010: 64-79 - [c136]Tantan Liu, Fan Wang, Gagan Agrawal:
Instance Discovery and Schema Matching with Applications to Biological Deep Web Data Integration. DILS 2010: 148-163 - [c135]David Chiu, Gagan Agrawal:
Evaluating caching and storage options on the Amazon Web Services Cloud. GRID 2010: 17-24 - [c134]Smita Vijayakumar, Qian Zhu, Gagan Agrawal:
Automated and dynamic application accuracy management and resource provisioning in a cloud environment. GRID 2010: 33-40 - [c133]Xin Huo, Vignesh T. Ravi, Wenjing Ma, Gagan Agrawal:
Approaches for parallelizing reductions on modern GPUs. HiPC 2010: 1-10 - [c132]Wenjing Ma, Gagan Agrawal:
An integer programming framework for optimizing shared memory use on GPUs. HiPC 2010: 1-10 - [c131]Qian Zhu, Gagan Agrawal:
Resource provisioning with budget constraints for adaptive applications in cloud environments. HPDC 2010: 304-307 - [c130]Tantan Liu, Fan Wang, Jiedan Zhu, Gagan Agrawal:
Differential Analysis on Deep Web Data Sources. ICDM Workshops 2010: 33-40 - [c129]Venkatram Ramanathan, Wenjing Ma, Vignesh T. Ravi, Tantan Liu, Gagan Agrawal:
Parallelizing an Information Theoretic Co-clustering Algorithm Using a Cloud Middleware. ICDM Workshops 2010: 186-193 - [c128]Tantan Liu, Fan Wang, Gagan Agrawal:
Stratified Sampling for Data Mining on the Deep Web. ICDM 2010: 324-333 - [c127]Vignesh T. Ravi, Wenjing Ma, David Chiu, Gagan Agrawal:
Compiler and runtime support for enabling generalized reduction computations on heterogeneous parallel configurations. ICS 2010: 137-146 - [c126]Tekin Bicer, Wei Jiang, Gagan Agrawal:
Supporting fault tolerance in a data-intensive computing middleware. IPDPS 2010: 1-12 - [c125]Wenjing Ma, Gagan Agrawal:
AUTO-GC: Automatic translation of data mining applications to GPU clusters. IPDPS Workshops 2010: 1-8 - [c124]David Chiu, Apeksha Shetty, Gagan Agrawal:
Elastic Cloud Caches for Accelerating Service-Oriented Computations. SC 2010: 1-11 - [c123]Qian Zhu, Jiedan Zhu, Gagan Agrawal:
Power-Aware Consolidation of Scientific Workflows in Virtualized Environments. SC 2010: 1-12
2000 – 2009
- 2009
- [j20]Qian Zhu, Gagan Agrawal:
An adaptive middleware for supporting time-critical event response. Clust. Comput. 12(1): 87-100 (2009) - [c122]David Chiu, Gagan Agrawal:
Hierarchical Caches for Grid Workflows. CCGRID 2009: 228-235 - [c121]Vignesh T. Ravi, Gagan Agrawal:
Performance Issues in Parallelizing Data-Intensive Applications on a Multi-core Cluster. CCGRID 2009: 308-315 - [c120]Wei Jiang, Vignesh T. Ravi, Gagan Agrawal:
Comparing map-reduce and FREERIDE for data-intensive applications. CLUSTER 2009: 1-10 - [c119]Tantan Liu, Fan Wang, Gagan Agrawal:
Exploiting Parallelism to Accelerate Keyword Search on Deep-Web Sources. DILS 2009: 141-156 - [c118]Fan Wang, Yuan Hong, Wenbin Zhang, Gagan Agrawal:
Personality Based Latent Friendship Mining. DMIN 2009: 427-433 - [c117]Vignesh T. Ravi, Gagan Agrawal:
Integrating and optimizing transactional memory in a data mining middleware. HiPC 2009: 215-224 - [c116]Leonid Glimcher, Vignesh T. Ravi, Gagan Agrawal:
Supporting load balancing for distributed data-intensive applications. HiPC 2009: 235-244 - [c115]Fan Wang, Gagan Agrawal:
Extracting Output Metadata from Scientific Deep Web Data Sources. ICDM 2009: 552-561 - [c114]Wenjing Ma, Gagan Agrawal:
A translation system for enabling data mining applications on GPUs. ICS 2009: 400-409 - [c113]David Chiu, Sagar Deshpande, Gagan Agrawal, Rongxing Li:
A Dynamic Approach toward QoS-Aware Service Workflow Composition. ICWS 2009: 655-662 - [c112]Qian Zhu, Gagan Agrawal:
A resource allocation approach for supporting time-critical applications in grid environments. IPDPS 2009: 1-12 - [c111]Wenjing Ma, Gagan Agrawal:
A compiler and runtime system for enabling data mining applications on gpus. PPoPP 2009: 287-288 - [c110]Qian Zhu, Gagan Agrawal:
Supporting fault-tolerance for time-critical events in distributed environments. SC 2009 - [c109]Fan Wang, Gagan Agrawal:
SEEDEEP: A System for Exploring and Querying Scientific Deep Web Data Sources. SSDBM 2009: 74-82 - [c108]David Chiu, Gagan Agrawal:
Enabling Ad Hoc Queries over Low-Level Scientific Data Sets. SSDBM 2009: 218-236 - 2008
- [j19]Leonid Glimcher, Ruoming Jin, Gagan Agrawal:
Middleware for data mining applications on clusters and grids. J. Parallel Distributed Comput. 68(1): 37-53 (2008) - [j18]Xingquan Zhu, Ruoming Jin, Yuri Breitbart, Gagan Agrawal:
MMIS07, 08: mining multiple information sources workshop report. SIGKDD Explor. 10(2): 61-65 (2008) - [c107]Leonid Glimcher, Gagan Agrawal:
A Middleware for Developing and Deploying Scalable Remote Mining Services. CCGRID 2008: 242-249 - [c106]David Chiu, Sagar Deshpande, Gagan Agrawal, Rongxing Li:
Composing geoinformatics workflows with user preferences. GIS 2008: 55 - [c105]David Chiu, Sagar Deshpande, Gagan Agrawal, Rongxing Li:
Cost and accuracy sensitive dynamic workflow composition over grid environments. GRID 2008: 9-16 - [c104]Qian Zhu, Gagan Agrawal:
An Adaptive Middleware for Supporting Time-Critical Event Response. ICAC 2008: 99-108 - [c103]Qian Zhu, Gagan Agrawal:
Resource Allocation for Distributed Streaming Applications. ICPP 2008: 414-421 - [c102]Liang Chen, Han-Wei Shen, Gagan Agrawal:
Supporting a visualization application on a self-adapting grid middleware. IPDPS 2008: 1-8 - [c101]Xuan Zhang, Gagan Agrawal:
Supporting high performance bioinformatics flat-file data processing using indices. IPDPS 2008: 1-8 - [c100]Qian Zhu, Liang Chen, Gagan Agrawal:
Supporting fault-tolerance in streaming grid applications. IPDPS 2008: 1-12 - [c99]Fan Wang, Gagan Agrawal, Ruoming Jin:
Query Planning for Searching Inter-dependent Deep-Web Databases. SSDBM 2008: 24-41 - [e1]Wu-chi Feng, Yuanyuan Yang, Gagan Agrawal:
37th International Conference on Parallel Processing - Workshops, 8-12 September 2008, Portland, Oregon, USA. IEEE Computer Society 2008, ISBN 978-0-7695-3375-9 [contents] - 2007
- [c98]Fan Wang, Gagan Agrawal, Ruoming Jin, Helen Piontkivska:
SNPMiner: A Domain-Specific Deep Web Mining Tool. BIBE 2007: 192-199 - [c97]Fan Wang, Ruoming Jin, Gagan Agrawal, Helen Piontkivska:
Graph and Topological Structure Mining on Scientific Articles. BIBE 2007: 1318-1322 - [c96]Li Weng, Ümit V. Çatalyürek, Tahsin M. Kurç, Gagan Agrawal, Joel H. Saltz:
Optimizing multiple queries on scientific datasets with partial replicas. GRID 2007: 259-266 - [c95]Leonid Glimcher, Gagan Agrawal:
A Performance Prediction Framework for Grid-Based Data Mining Applications. IPDPS 2007: 1-10 - [c94]Qian Zhu, Liang Chen, Gagan Agrawal:
Supporting fault-tolerance in streaming grid applications. PPoPP 2007: 156-157 - [p1]Ruoming Jin, Gagan Agrawal:
Frequent Pattern Mining in Data Streams. Data Streams - Models and Algorithms 2007: 61-84 - 2006
- [j17]Liang Chen, Gagan Agrawal:
A static resource allocation framework for Grid-based streaming applications. Concurr. Comput. Pract. Exp. 18(6): 653-666 (2006) - [j16]Ruoming Jin, Anjan Goswami, Gagan Agrawal:
Fast and exact out-of-core and distributed k-means clustering. Knowl. Inf. Syst. 10(1): 17-40 (2006) - [c93]Kaushik Sinha, Ruoming Jin, Gagan Agrawal, Helen Piontkivska:
Exploratory Tools for FollowUp Studies to Microarray Experiments. BIBE 2006: 81-85 - [c92]Xuan Zhang, Gagan Agrawal:
A Tool for Supporting Integration Across Multiple FlatFile Datasets. BIBE 2006: 141-148 - [c91]Xuan Zhang, Ruoming Jin, Gagan Agrawal:
Assigning Schema Labels Using Ontology And Hueristics. BIBE 2006: 269-280 - [c90]Qian Zhu, Liang Chen, Gagan Agrawal:
Supporting a Real-Time Distributed Intrusion Detection Application on GATES. Euro-Par 2006: 360-370 - [c89]Gagan Agrawal, Hakan Ferhatosmanoglu, Xutong Niu, Keith W. Bedford, Ron Li:
A Vision for Cyberinfrastructure for Coastal Forecasting and Change Analysis. GSN 2006: 151-174 - [c88]Ruoming Jin, Gagan Agrawal:
Systematic Approach for Optimizing Complex Mining Tasks on Multiple Databases. ICDE 2006: 17 - [c87]Ruoming Jin, Leonid Glimcher, Chris Jermaine, Gagan Agrawal:
New Sampling-Based Estimators for OLAP Queries. ICDE 2006: 18 - [c86]Leonid Glimcher, Ruoming Jin, Gagan Agrawal:
FREERIDE-G: Supporting Applications that Mine Remote. ICPP 2006: 109-118 - [c85]Li Weng, Ümit V. Çatalyürek, Tahsin M. Kurç, Gagan Agrawal, Joel H. Saltz:
Using Space and Attribute Partitioned Partial Replicas for Data Subsetting and Aggregation Queries. ICPP 2006: 271-280 - [c84]Xiaogang Li, Gagan Agrawal:
Parallelizing XQuery In a Cluster Environment. IDEAS 2006: 291-294 - [c83]Liang Chen, Gagan Agrawal:
Supporting self-adaptation in streaming data mining applications. IPDPS 2006 - [c82]Liang Chen, Qian Zhu, Gagan Agrawal:
Grid scheduling and protocols - Supporting dynamic migration in tightly coupled grid applications. SC 2006: 117 - 2005
- [j15]Ruoming Jin, Gagan Agrawal:
A methodology for detailed performance modeling of reduction computations on SMP machines. Perform. Evaluation 60(1-4): 73-105 (2005) - [j14]Ruoming Jin, Ge Yang, Gagan Agrawal:
Shared Memory Parallelization of Data Mining Algorithms: Techniques, Programming Interface, and Performance. IEEE Trans. Knowl. Data Eng. 17(1): 71-89 (2005) - [j13]Ruoming Jin, Karthikeyan Vaidyanathan, Ge Yang, Gagan Agrawal:
Communication and Memory Optimal Parallel Data Cube Construction. IEEE Trans. Parallel Distributed Syst. 16(12): 1105-1119 (2005) - [c81]Swarup Kumar Sahoo, Gagan Agrawal:
Data Centric Transformations on Non-Integer Iteration Spaces. IEEE PACT 2005: 133-142 - [c80]Kaushik Sinha, Xuan Zhang, Ruoming Jin, Gagan Agrawal:
Using Data Mining Techniques to Learn Layouts of Flat-File Biological Datasets. BIBE 2005: 177-184 - [c79]Li Weng, Ümit V. Çatalyürek, Tahsin M. Kurç, Gagan Agrawal, Joel H. Saltz:
Servicing range queries on multidimensional datasets with partial replicas. CCGRID 2005: 726-733 - [c78]Kaushik Sinha, Xuan Zhang, Ruoming Jin, Gagan Agrawal:
Learning Layouts of Biological Datasets Semi-automatically. DILS 2005: 31-45 - [c77]Xuan Zhang, Gagan Agrawal:
Enabling information integration and workflows in a grid environment with automatic wrapper generation. GRID 2005: 156-163 - [c76]Ruoming Jin, Gagan Agrawal:
An Algorithm for In-Core Frequent Itemset Mining on Streaming Data. ICDM 2005: 210-217 - [c75]Wei Du, Gagan Agrawal:
Filter Decomposition for Supporting Coarse-Grained Pipelined Parallelism. ICPP 2005: 539-546 - [c74]Leonid Glimcher, Gagan Agrawal, Sameep Mehta, Ruoming Jin, Raghu Machiraju:
Parallelizing a Defect Detection and Categorization Application. IPDPS 2005 - [c73]Ruoming Jin, Kaushik Sinha, Gagan Agrawal:
A framework to support multiple query optimization for complex mining tasks. MDM@KDD 2005: 23-32 - [c72]Ruoming Jin, Kaushik Sinha, Gagan Agrawal:
Simultaneous optimization of complex mining tasks with a knowledgeable cache. KDD 2005: 600-605 - [c71]Ruoming Jin, Chao Wang, Dmitrii Polshakov, Srinivasan Parthasarathy, Gagan Agrawal:
Discovering frequent topological structures from graph datasets. KDD 2005: 606-611 - [c70]Xiaogang Li, Gagan Agrawal:
Code Transformations for One-Pass Analysis. LCPC 2005: 377-396 - [c69]Xiaogang Li, Gagan Agrawal:
Efficient Evaluation of XQuery over Streaming Data. VLDB 2005: 265-276 - 2004
- [c68]Leonid Glimcher, Gagan Agrawal:
Parallelizing EM Clustering Algorithm on a Cluster of SMPs. Euro-Par 2004: 372-380 - [c67]Li Weng, Gagan Agrawal, Ümit V. Çatalyürek, Tahsin M. Kurç, Sivaramakrishnan Narayanan, Joel H. Saltz:
An Approach for Automatic Data Virtualization. HPDC 2004: 24-33 - [c66]Liang Chen, Kolagatla Reddy, Gagan Agrawal:
GATES: A Grid-Based Middleware for Processing Distributed Data Streams. HPDC 2004: 192-201 - [c65]Liang Chen, Gagan Agrawal:
Self-Adaptation in a Middleware for Processing Data Streams. ICAC 2004: 292-293 - [c64]Anjan Goswami, Ruoming Jin, Gagan Agrawal:
Fast and Exact Out-of-Core K-Means Clustering. ICDM 2004: 83-90 - [c63]Wei Du, Gagan Agrawal:
Packet Size Optimization for Supporting Coarse-Grained Pipelined Parallelism. ICPP 2004: 259-266 - [c62]Ruoming Jin, Karthik Vaidyanathan, Ge Yang, Gagan Agrawal:
Using Tiling to Scale Parallel Data Cube Construction. ICPP 2004: 365-372 - [c61]Leonid Glimcher, Xuan Zhang, Gagan Agrawal:
Scaling and Parallelizing a Scientific Feature Mining Application Using a Cluster Middleware. IPDPS 2004 - [c60]Li Weng, Gagan Agrawal, Ümit V. Çatalyürek, Joel H. Saltz:
Supporting SQL-3 Aggregations on Grid-Based Data Repositories. LCPC 2004: 283-298 - [c59]Swarup Kumar Sahoo, Gagan Agrawal:
Supporting XML Based High-Level Abstractions on HDF5 Datasets: A Case Study in Automatic Data Virtualization. LCPC 2004: 299-318 - [c58]Liang Chen, Gagan Agrawal:
Resource allocation in a middleware for streaming data. Middleware for Grid Computing 2004: 5-10 - [c57]Wei Du, Gagan Agrawal:
Language and Compiler Support for Adaptive Applications. SC 2004: 29 - [c56]Xiaogang Li, Swarup Kumar Sahoo, Gagan Agrawal:
XQuery Perspective: Using XML/XQuery for Scientific Applications and Applying Scientific Compilation Techniques. XIME-P 2004: 25-30 - 2003
- [j12]Ge Yang, Ruoming Jin, Gagan Agrawal:
Implementing data cube construction using a cluster middleware: algorithms, implementation experience, and performance evaluation. Future Gener. Comput. Syst. 19(4): 533-550 (2003) - [c55]Xiaogang Li, Gagan Agrawal:
Using XQuery for Flat-File Based Scientific Datasets. DBPL 2003: 179-194 - [c54]Ruoming Jin, Ge Yang, Gagan Agrawal:
Parallel Data Cube Construction: Algorithms, Theoretical Analysis, and Experimental Evaluation. HiPC 2003: 74-84 - [c53]Ruoming Jin, Ge Yang, Karthik Vaidyanathan, Gagan Agrawal:
Communication and Memory Optimal Parallel Data Cube Construction. ICPP 2003: 573-580 - [c52]Xiaogang Li, Renato Ferreira, Gagan Agrawal:
Compiler support for efficient processing of XML datasets. ICS 2003: 42-52 - [c51]Xiaogang Li, Ruoming Jin, Gagan Agrawal:
A Compilation Framework for Distributed Memory Parallelization of Data Mining Algorithms. IPDPS 2003: 7 - [c50]Ge Yang, Ruoming Jin, Gagan Agrawal:
Impact of Data Distribution, Level of Parallelism, and Communication Frequency on Parallel Data Cube Construction. IPDPS 2003: 66 - [c49]Wei Du, Gagan Agrawal:
Compiler Supported Coarse-Grained Pipelined Parallelism: Why and How. IPDPS 2003: 204 - [c48]Ruoming Jin, Gagan Agrawal:
Efficient decision tree construction on streaming data. KDD 2003: 571-576 - [c47]Xiaogang Li, Gagan Agrawal:
Supporting High-Level Abstractions through XML Technology. LCPC 2003: 127-146 - [c46]Wei Du, Renato Ferreira, Gagan Agrawal:
Compiler Support for Exploiting Coarse-Grained Pipelined Parallelism. SC 2003: 8 - [c45]Tahsin M. Kurç, Feng Lee, Gagan Agrawal, Ümit V. Çatalyürek, Renato Ferreira, Joel H. Saltz:
Optimizing Reduction Computations In a Distributed Environment. SC 2003: 9 - [c44]Ruoming Jin, Gagan Agrawal:
Communication and Memory Efficient Parallel Decision Tree Construction. SDM 2003: 119-129 - 2002
- [j11]Kevin B. Theobald, Rishi Kumar, Gagan Agrawal, Gerd Heber, Ruppa K. Thulasiram, Guang R. Gao:
Implementation and evaluation of a communication intensive application on the EARTH multithreaded system. Concurr. Comput. Pract. Exp. 14(3): 183-201 (2002) - [j10]Renato Ferreira, Gagan Agrawal, Joel H. Saltz:
Data parallel language and compiler support for data intensive applications. Parallel Comput. 28(5): 725-748 (2002) - [c43]Gagan Agrawal, Jinqian Li, Qi Su:
Evaluating a Demand Driven Technique for Call Graph Construction. CC 2002: 29-45 - [c42]Ge Yang, Ruoming Jin, Gagan Agrawal:
Implementing Data Cube Construction using a Cluster Middleware: Algorithms, Implementation Experience, and Performance Evaluation. CCGRID 2002: 84-92 - [c41]Wei Du, Gagan Agrawal:
Developing Distributed Data Mining Implementations for a Grid Environment. CCGRID 2002: 440-441 - [c40]Ruoming Jin, Gagan Agrawal:
Runtime support for parallelizing data mining algorithms. Data Mining and Knowledge Discovery: Theory, Tools, and Technology 2002: 212-223 - [c39]Ruoming Jin, Gagan Agrawal:
Shared Memory Parallelization of Decision Tree Construction Using a General Data Mining Middleware. Euro-Par 2002: 346-354 - [c38]Renato Ferreira, Gagan Agrawal, Joel H. Saltz:
Compiler supported high-level abstractions for sparse disk-resident datasets. ICS 2002: 241-251 - [c37]Ruoming Jin, Gagan Agrawal:
Design and Evaluation of a High-Level Interface for Data Mining. IPDPS 2002 - [c36]Rishi Kumar, Gagan Agrawal, Guang R. Gao:
Compiling Several Classes of Communication Patterns on a Multithreaded Architecture. IPDPS 2002 - [c35]Gary M. Zoppetti, Gagan Agrawal, Rishi Kumar:
Compiler and Runtime Support for Irregular Reductions on a Multithreaded Architecture. IPDPS 2002 - [c34]Xiaogang Li, Ruoming Jin, Gagan Agrawal:
Compiler and Runtime Support for Shared Memory Parallelization of Data Mining Algorithms. LCPC 2002: 265-279 - [c33]Ruoming Jin, Gagan Agrawal:
Shared Memory Paraellization of Data Mining Algorithms: Techniques, Programming Interface, and Performance. SDM 2002: 77-94 - [c32]Ruoming Jin, Gagan Agrawal:
Performance prediction for random write reductions: a case study in modeling shared memory programs. SIGMETRICS 2002: 117-128 - 2001
- [c31]Renato Ferreira, Joel H. Saltz, Gagan Agrawal:
Compiler and Runtime Analysis for Efficient Communication in Data Intensive Applications. IEEE PACT 2001: 231-242 - [c30]Gary M. Zoppetti, Gagan Agrawal, Rishi Kumar:
Impact of Data Distribution on Performance of Irregular Reductions on Multithreaded Architectures. HPCN Europe 2001: 483-492 - [c29]Ruoming Jin, Gagan Agrawal:
An efficient association mining implementation on clusters of SMP. IPDPS 2001: 156 - [c28]Gagan Agrawal, Ruoming Jin, Xiaogang Li:
Compiler and Middleware Support for Scalable Data Mining. LCPC 2001: 33-51 - [c27]Gagan Agrawal, Liang Guo:
Evaluating explicitly context-sensitive program slicing. PASTE 2001: 6-12 - [c26]Gary M. Zoppetti, Gagan Agrawal:
An Execution Strategy for Irregular Reductions on Multithreaded Architectures. PP 2001 - [c25]Ruoming Jin, Gagan Agrawal:
A Middleware for Developing Parallel Data Mining Applications. SDM 2001: 1-18 - 2000
- [j9]Dixie Hisley, Gagan Agrawal, Punyam Satya-narayana, Lori L. Pollock:
Porting and performance evaluation of irregular codes using OpenMP. Concurr. Pract. Exp. 12(12): 1241-1259 (2000) - [c24]Gagan Agrawal:
Demand-Driven Construction of Call Graphs. CC 2000: 125-140 - [c23]Kevin B. Theobald, Rishi Kumar, Gagan Agrawal, Gerd Heber, Ruppa K. Thulasiram, Guang R. Gao:
Developing a Communication Intensive Application on the EARTH Multithreaded Architecture (Distinguished Paper). Euro-Par 2000: 625-637 - [c22]Renato Ferreira, Gagan Agrawal, Joel H. Saltz:
Compiling object-oriented data intensive applications. ICS 2000: 11-21 - [c21]Gary M. Zoppetti, Gagan Agrawal, Lori L. Pollock, José Nelson Amaral, Xinan Tang, Guang R. Gao:
Automatic compiler techniques for thread coarsening for multithreaded architectures. ICS 2000: 306-315 - [c20]Renato Ferreira, Gagan Agrawal, Ruoming Jin, Joel H. Saltz:
Compiling Data Intensive Applications with Spatial Coordinates. LCPC 2000: 339-354 - [c19]Gagan Agrawal, Renato Ferreira, Ruoming Jin, Joel H. Saltz:
High Level Programming Methodologies for Data Intensive Computations. LCR 2000: 32-43 - [c18]Kevin B. Theobald, Gagan Agrawal, Rishi Kumar, Gerd Heber, Guang R. Gao, Paul Stodghill, Keshav Pingali:
Landing CG on EARTH: A Case Study of Fine-Grained Multithreading on an Evolutionary Path. SC 2000: 4
1990 – 1999
- 1999
- [j8]Gagan Agrawal:
Data Distribution Analysis for Irregular and Adaptive Codes. Parallel Process. Lett. 9(1): 135-146 (1999) - [j7]Gagan Agrawal, Shyamala Murthy, Chandrashekar Garud:
A Novel Program Representation for Interprocedural Analysis. ACM SIGPLAN Notices 34(4): 70-76 (1999) - [j6]Gagan Agrawal:
A General Interprocedural Framework for Placement of Split-Phase Large Latency Operations. IEEE Trans. Parallel Distributed Syst. 10(4): 394-413 (1999) - [c17]Gagan Agrawal:
Advanced Communication Optimaizations for Data-Parallel Programs. HPCN Europe 1999: 1139-1142 - [c16]Gagan Agrawal:
Simultaneous Demand-Driven Data-Flow and Call Graph Analysis. ICSM 1999: 453-462 - [c15]Gary M. Zoppetti, Gagan Agrawal, Lori L. Pollock:
Thresholding for Work Distribution of Recursive, Multithreaded Functions. LCPC 1999: 485-489 - 1998
- [j5]Gagan Agrawal:
Interprocedural Partial Redundancy Elimination With Application to Distributed Memory Compilation. IEEE Trans. Parallel Distributed Syst. 9(7): 609-625 (1998) - [c14]Gagan Agrawal:
Automatic Data Partitioning for Irregular and Adaptive Applications. ICPP 1998: 587-594 - [c13]Gagan Agrawal:
I/O Granularity Transformations. LCPC 1998: 68-82 - [c12]Dixie Hisley, Gagan Agrawal, Lori L. Pollock:
Evaluating the Effectiveness of a Parallelizing Compiler. LCR 1998: 195-204 - 1997
- [j4]Joel H. Saltz, Gagan Agrawal, Chialin Chang, Raja Das, Guy Edjlali, Paul Havlak, Yuan-Shin Hwang, Bongki Moon, Ravi Ponnusamy, Shamik D. Sharma, Alan Sussman, Mustafa Uysal:
Programming Irregular Applications: Runtime Support, Compilation and Tools. Adv. Comput. 45: 105-153 (1997) - [j3]Gagan Agrawal, Joel H. Saltz:
Interprocedural Data Flow Based Optimizations for Distributed Memory Compilation. Softw. Pract. Exp. 27(5): 519-545 (1997) - 1996
- [c11]Gagan Agrawal, Anurag Acharya, Joel H. Saltz:
An Interprocedural Framework for Placement of Asynchronous I/O Operations. International Conference on Supercomputing 1996: 358-365 - 1995
- [j2]Gagan Agrawal, Pankaj Jalote:
Coding-Based Replication Schemes for Distributed Systems. IEEE Trans. Parallel Distributed Syst. 6(3): 240-251 (1995) - [j1]Gagan Agrawal, Alan Sussman, Joel H. Saltz:
An Integrated Runtime and Compile-Time Approach for Parallelizing Structured and Block Structured Applications. IEEE Trans. Parallel Distributed Syst. 6(7): 747-754 (1995) - [c10]Guy Edjlali, Gagan Agrawal, Alan Sussman, Joel H. Saltz:
Data parallel programming in an adaptive environment. IPPS 1995: 827-832 - [c9]Gagan Agrawal, Joel H. Saltz:
Interprocedural Data Flow Based Optimizations for Compilation of Irregular Problems. LCPC 1995: 465-479 - [c8]Gagan Agrawal, Guy Edjlali, Alan Sussman, Jim Humphries, Joel H. Saltz:
Runtime Support for Programming in Adaptive Parallel Environments. LCR 1995: 241-252 - [c7]Gagan Agrawal, Joel H. Saltz, Raja Das:
Interprocedural Partial Redundancy Elimination and its Application to Distributed Memory Compilation. PLDI 1995: 258-269 - [c6]Gagan Agrawal, Joel H. Saltz:
Interprocedural Compilation of Irregular Applications for Distributed Memory Machines. SC 1995: 48 - 1994
- [c5]Gagan Agrawal, Joel H. Saltz:
Interprocedural Communication Optimizations for Distributed Memory Compilation. LCPC 1994: 283-299 - 1993
- [c4]Gagan Agrawal, Alan Sussman, Joel H. Saltz:
Compiler and runtime support for structured and block structured applications. SC 1993: 578-587 - 1992
- [c3]Gagan Agrawal, Pankaj Jalote:
An Efficient Protocol for Voting In Distributed Systems. ICDCS 1992: 640-647 - [c2]Pankaj Jalote, Gagan Agrawal:
Using Coding to Support Data Resiliency in Distributed Systems. ICDE 1992: 192-199 - [c1]Gagan Agrawal:
Availability of Coding Based Replication Schemes. SRDS 1992: 103-110
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint