Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-37105-9_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Simple Implementation of an Entangler Circuit by Using Quantum Linear Optics

Published: 03 July 2023 Publication History

Abstract

The topic of quantum computing is one that is expanding quickly and has the potential to completely change how some difficult problems can be resolved. In recent years, there has been considerable advancement in the research and application of quantum computing technologies. The use of this technology to address challenging or impractical tasks for conventional computers is an area of ongoing research.
By creating an optical entangler, a quantum-helpful circuit for generating pairs of intensely entangled states, which are useful in numerous applications including quantum teleportation, quantum dense coding, and quantum error correction, this work has demonstrated a potential application of these technologies. Although the Optical Dual Rail Mode has shown to be extremely helpful for scaling up optical quantum circuits, there are still many obstacles and issues that need to be resolved before it can be widely applied in quantum computing.

References

[1]
Isaac, L.: Chuang and Yoshihisa Yamamoto. Simple quantum computer. Phys. Rev. A 52(5), 3489 (1995)
[2]
Simonetti, M., Perri, D., Gervasi, O.: An example of use of variational methods in quantum machine learning. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications –ICCSA 2022 Workshops. ICCSA 2022. LNCS, vol. 13382, pp. 597–609. Springer, Cham (2022).
[3]
Abdelgaber, N., Nikolopoulos, C.: Overview on quantum computing and its applications in artificial intelligence. In: 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 198–199. IEEE (2020)
[4]
Bayerstadler, A., et al.: Industry quantum computing applications. EPJ Quantum Technol. 8(1), 25 (2021)
[5]
Möller M and Vuik C On the impact of quantum computing technology on future developments in high-performance scientific computing Ethics Inf. Technol. 2017 19 253-269
[6]
Fox, A.M., Fox, M.: Quantum Optics: An Introduction, vol. 15. Oxford University Press, Oxford (2006)
[7]
Cerf, N.J., Adami, C., Kwiat, P.G.: Optical simulation of quantum logic. Phys. Rev. A 57(3), R1477 (1998)
[8]
Ralph, T.C.: Quantum optical systems for the implementation of quantum information processing. Rep. Progress Phys. 69(4), 853 (2006)
[9]
Somaschi, N., et al.: Near-optimal single-photon sources in the solid state. Nat. Photonics 10(5), 340–345 (2016)
[10]
Ollivier, H., et al.: Reproducibility of highperformance quantum dot single-photon sources. ACS Photonics 7(4), 1050–1059 (2020)
[11]
Loredo, J.C., et al. Scalable performance in solid-state single-photon sources. Optica 3(4), 433–440 (2016)
[12]
Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson sampling. Nat. Photonics 7(7), 540–544 (2013)
[13]
Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501 (2017)
[14]
Spring, J.B., et al.: Boson sampling on a photonic chip. Science 339(6121), 798–801 (2013)
[15]
Brod, D.J., Galvão, E.F., Crespi, A., Osellame, R., Spagnolo, N., Sciarrino, F.: Photonic implementation of boson sampling: a review. Adv. Photonics 1(3), 034001 (2019)
[16]
Perri, D., Simonetti, M., Gervasi, O.: Deploying efficiently modern applications on cloud. Electronics 11(3) (2022). issn: 2079-9292. https://www.mdpi.com/2079-9292/11/3/450
[17]
Perri D, Simonetti M, Tasso S, Ragni F, Gervasi O, et al. Gervasi O et al. Implementing a scalable and elastic computing environment based on cloud containers Computational Science and Its Applications – ICCSA 2021 2021 Cham Springer 676-689 ISBN: 978-3-030-86653-2
[18]
Perri, D., Simonetti, M., Gervasi, O.: Synthetic data generation to speed-up the object recognition pipeline. Electronics 11(1) (2022). ISSN: 2079-9292. https://www.mdpi.com/2079-9292/11/1/2
[19]
Perri, D., Fortunelli, M., Simonetti, M., Magni, R., Carloni, J., Gervasi, O.: Rapid prototyping of virtual reality cognitive exercises in a tele-rehabilitation context. Electronics 10(4) (2021). ISSN: 2079-9292. https://www.mdpi.com/2079-9292/10/4/457
[20]
Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: Binary classification of proteins by a machine learning approach. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 549–558. Springer, Cham (2020). ISBN: 978-3- 030-58820-5.
[21]
Laganà, A., Gervasi, O., Tasso, S., Perri, D., Franciosa, F.: The ECTN virtual education community prosumer model for promoting and assessing chemical knowledge. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 533–548. Springer, Cham (2018). ISBN: 978-3-319-95174-4.
[22]
Mermin, N.D.: Hidden variables and the two theorems of john bell. Rev. Mod. Phys. 65(3), 803 (1993)
[23]
Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71(2), S288 (1999)
[24]
Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63(1), 012305 (2000)
[25]
Clements, W.R., Humphreys, P.C., Metcalf, B.J., Kolthammer, W.S. Walmsley, I.A.: Optimal design for universal multiport interferometers. Optica 3(12), 1460–1465 (2016)
[26]
Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58 (1994)
[27]
de Guise, H., Di Matteo, O., Sánchez-Soto, L.L.: Simple factorization of unitary transformations. Phys. Rev. A 97(2), 022328 (2018)
[28]
Kumar, S.P., Dhand, I.: Unitary matrix decompositions for optimal and modular linear optics architectures. J. Phys. A Math. Theor. 54(4), 045301 (2021)
[29]
Imre, S., Balazs, F.: Quantum Computing and Communications: An Engineering Approach. John Wiley & Sons, Hoboken (2005)
[30]
Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94(17), 173602 (2005)
[31]
Rezakhani, A.T.: Characterization of two-qubit perfect entanglers. Phys. Rev. A 70(5), 052313 (2004)
[32]
Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67(4), 042313 (2003)
[33]
Heurtel, N., et al.: Perceval: a software platform for discrete variable photonic quantum computing. Quantum 7, 931 (2023). ISSN : 2521–327X.
[34]
Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65(6), 062324 (2002)
[35]
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computational Science and Its Applications – ICCSA 2023 Workshops: Athens, Greece, July 3–6, 2023, Proceedings, Part I
Jul 2023
780 pages
ISBN:978-3-031-37104-2
DOI:10.1007/978-3-031-37105-9

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 July 2023

Author Tags

  1. Quantum Computing
  2. Optical Quantum Processing Unit
  3. Entangler
  4. Dual Rail Mode

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media