Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-70061-3_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Force Cue Presentation by Electrical Stimulation to Lateral Side of the Finger

Published: 03 November 2024 Publication History

Abstract

It is known that skin deformations on the side of finger contribute to force perception in the fingertip. This study focuses on this knowledge and proposes a method to present force sensation by transcutaneous electrical stimulation via the side of the finger. The compactness of the proposed method makes it suitable for mounting on the fingertip. Moreover, it does not interfere with the tactile sensation of the fingertip, making it easy to combine with other methods such as vibration presentation. Our system is composed of electrodes on the lateral side of fingertip and dorsal surface of middle finger joint. Using this system, we examined the effect of electrical stimulation to the perception of weight during grasping. The results revealed a tendency to perceive the weight of the grasped object to be larger with the stimulation.

References

[1]
Pacchierotti C, Sinclair S, Solazzi M, Frisoli A, Hayward V, and Prattichizzo D Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives IEEE Trans. Haptics 2017 10 4 580-600
[2]
Birznieks I, Macefield VG, Westling G, and Johansson RS Slowly adapting mechanoreceptors in the borders of the human fingernail encode fingertip forces J. Neurosci. 2009 29 29 9370-9379
[3]
Feng, X.M., Duan, Z.J., Fu, Y., Sun, A.L., Zhang, D.W.: The technology and application of voice coil actuator. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, pp. 892–895 (2011).
[4]
McMahan, W., Kuchenbecker, K.J.: Dynamic modeling and control of voice-coil actuators for high-fidelity display of haptic vibrations. In: 2014 IEEE Haptics Symposium (HAPTICS), pp. 115–122 (2014).
[5]
Huang, H., Li, T., Antfolk, C., Enz, C., Justiz, J., Koch, V.M.: Experiment and investigation of two types of vibrotactile devices. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1266–1271 (2016).
[6]
Sun, Z., Zhu, M., Shan, X., Lee, C.: Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun. 13(1), 1 (2022).
[7]
Prattichizzo D, Chinello F, Pacchierotti C, and Malvezzi M Towards Wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback IEEE Trans. Haptics 2013 6 4 506-516
[8]
Prattichizzo, D., Pacchierotti, C., Cenci, S., Minamizawa, K., Rosati, G.: Using a fingertip tactile device to substitute kinesthetic feedback in haptic interaction. In: Haptics: Generating and Perceiving Tangible Sensations, Berlin, Heidelberg, pp. 125–130 (2010).
[9]
Tsetserukou, D., Hosokawa, S., Terashima, K.: LinkTouch: a wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad. In: 2014 IEEE Haptics Symposium (HAPTICS), pp. 307–312 (2014).
[10]
Leonardis, D., Solazzi, M., Bortone, I., Frisoli, A.: A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. In: 2015 IEEE World Haptics Conference (WHC), pp. 388–393 (2015).
[11]
Yem, V., Okazaki, R., Kajimoto, H.: FinGAR: combination of electrical and mechanical stimulation for high-fidelity tactile presentation. In: ACM SIGGRAPH 2016 Emerging Technologies, New York, NY, USA, pp. 1–2 (2016).
[12]
Teng, S.-Y., Li, P., Nith, R., Fonseca, J., Lopes, P.: Touch & Fold: a foldable haptic actuator for rendering touch in mixed reality. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 1–14 (2021).
[13]
Han, T., Anderson, F., Irani, P., Grossman, T.: HydroRing: supporting mixed reality haptics using liquid flow. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, pp. 913–925 (2018).
[14]
Choi, I., Hawkes, E.W., Christensen, D.L., Ploch, C.J., Follmer, S.: Wolverine: a wearable haptic interface for grasping in virtual reality. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 986–993 (2016).
[15]
Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., Tachi, S.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH 2007 Emerging Technologies, New York, NY, USA, pp. 8-es (2007).
[16]
Giraud, F.H., Joshi, S., Paik, J.: Haptigami: a fingertip haptic interface with vibrotactile and 3-DoF cutaneous force feedback. IEEE Trans. Haptics, 1 (2021).
[17]
Maeda, T., Yoshida, S., Murakami, T., Matsuda, K., Tanikawa, T., Sakai, H.: Fingeret: a wearable fingerpad-free haptic device for mixed reality. In: Symposium on Spatial User Interaction, Online CA USA, pp. 1–10 (2022).
[18]
Kourtesis P, Argelaguet F, Vizcay S, Marchal M, and Pacchierotti C Electrotactile feedback applications for hand and arm interactions: a systematic review, meta-analysis, and future directions IEEE Trans. Haptics 2022 15 3 479-496
[19]
Lin, W., et al.: Super-resolution wearable electrotactile rendering system. Sci. Adv. 8(36), eabp8738 (2022).
[20]
Yao, K., et al.: Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4(10), 10 (2022).
[21]
Trinitatova, D., Cabrera, M.A., Ponomareva, P., Fedoseev, A., Tsetserukou, D.: Exploring the role of electro-tactile and kinesthetic feedback in telemanipulation task. In: 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), pp. 641–646 (2022).
[22]
Hummel, J., et al.: A lightweight electrotactile feedback device for grasp improvement in immersive virtual environments. In: 2016 IEEE Virtual Reality (VR), pp. 39–48 (2016).
[23]
Withana, A., Groeger, D., Steimle, J.: Tacttoo: a thin and feel-through tattoo for on-skin tactile output. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, pp. 365–378 (2018).
[24]
Yoshimoto, S., Kuroda, Y., Imura, M., Oshiro, O., Sato, K.: Electrically multiplexed tactile interface: fusion of smart tactile sensor and display. In: 2013 World Haptics Conference (WHC), pp. 151–156 (2013).
[25]
Vargas L, Whitehouse G, Huang H, Zhu Y, and Hu X Evoked haptic sensation in the hand with concurrent non-invasive nerve stimulation IEEE Trans. Biomed. Eng. 2019 66 10 2761-2767
[26]
Yem, V., Vu, K., Kon, Y., Kajimoto, H., “Effect of Electrical Stimulation Haptic Feedback on Perceptions of Softness-Hardness and Stickiness While Touching a Virtual Object,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Mar. 2018, pp. 89–96,
[27]
Kurita Y, Ishikawa T, and Tsuji T Stiffness display by muscle contraction via electric muscle stimulation IEEE Robot. Autom. Lett. 2016 1 2 1014-1019
[28]
Bao X, Zhou Y, Wang Y, Zhang J, Lü X, and Wang Z Electrode placement on the forearm for selective stimulation of finger extension/flexion PLoS ONE 2018 13 1 e0190936
[29]
Duente, T., Pfeiffer, M., Rohs, M.: Zap++: a 20-channel electrical muscle stimulation system for fine-grained wearable force feedback. In: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, New York, NY, USA, pp. 1–13 (2017).
[30]
Takahashi, A., Brooks, J., Kajimoto, H., Lopes, P.: Increasing electrical muscle stimulation’s dexterity by means of back of the hand actuation. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 1–12 (2021).
[31]
Sato, K., Tachi, S.: Design of electrotactile stimulation to represent distribution of force vectors. In: 2010 IEEE Haptics Symposium, pp. 121–128 (2010).
[32]
Johansson RS and Vallbo AB Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin J. Physiol. 1979 286 1 283-300
[33]
Tanaka, Y., Shen, A., Kong, A., Lopes, P.: Full-hand electro-tactile feedback without obstructing palmar side of hand. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg Germany, pp. 1–15 (2023).
[34]
Yem V and Kajimoto H Comparative evaluation of tactile sensation by electrical and mechanical stimulation IEEE Trans. Haptics 2017 10 1 130-134
[35]
Rekimoto, J.: Traxion: a tactile interaction device with virtual force sensation. In: ACM SIGGRAPH 2014 Emerging Technologies, New York, NY, USA, p. 1 (2014).
[36]
Culbertson, H., Walker, J.M., Raitor, M., Okamura, A.M.: “WAVES: a wearable asymmetric vibration excitation system for presenting three-dimensional translation and rotation cues. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 4972–4982 (2017).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Haptics: Understanding Touch; Technology and Systems; Applications and Interaction: 14th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2024, Lille, France, June 30 – July 3, 2024, Proceedings, Part II
Jun 2024
525 pages
ISBN:978-3-031-70060-6
DOI:10.1007/978-3-031-70061-3

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 November 2024

Author Tags

  1. Electrical Stimulation
  2. Fingertip
  3. Force Perception

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media