Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Dynamic Skin Triangulation

Published: 01 April 2001 Publication History

Abstract

This paper describes an algorithm for maintaining an approximating triangulation of a deforming surface in R 3 . The surface is the envelope of an infinite family of spheres defined and controlled by a finite collection of weighted points. The triangulation adapts dynamically to changing shape, curvature, and topology of the surface.

References

[1]
H. I. Aaronson, ed. Lectures on the Theory of Phase Transformation. American Institute of Mining, Metallurgical and Petroleum Engineer, New York, 1975.
[2]
P. S. Alexandrov. Combinatorial Topology. Dover, New York, 1956.
[3]
N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22 (1999), 481-504.
[4]
H.-L. Cheng, H. Edelsbrunner, and P. Fu. Shape space from deformation. In Proc. 6th Pacific Conf. Comput. Graphics Appl., Singapore, 1998, pp. 104-113.
[5]
T. E. Creighton. Proteins. Structures and Molecular Principles. Freeman, New York, 1984.
[6]
C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Design 12 (1995), 771-784.
[7]
H. Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom. 13 (1995), 415-440.
[8]
H. Edelsbrunner. Deformable smooth surface design. Discrete Comput. Geom. 21 (1999), 87-115.
[9]
H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph. 13 (1994), 43-72.
[10]
H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. Internat. J. Comput. Geom. Appl. 7 (1997), 365-378.
[11]
M. A. Facello. Geometric techniques for molecular shape analysis. Ph.D. thesis, Report UIUCDCS-R-96- 1967, Dept. Comput. Sci., Univ. Illinois, Urbana, Illinois, 1996.
[12]
A. Gray. Modern Differential Geometry of Curves and Surfaces. CRC Press, Boca Raton, Florida, 1993.
[13]
L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph. 4 (1985), 74-123.
[14]
J. Milnor. Morse Theory. Princeton University Press, Princeton, New Jersey, 1963.
[15]
T. E. Morthland, P. E. Byrne, D. A. Tortorelli, and J. A. Dantzig. Optimal riser design for metal castings. Metall. Material Trans. 26B (1995), 871-885.
[16]
D. Pedoe. Geometry: a Comprehensive Course. Dover, New York, 1988.
[17]
N. Provatas, N. Goldenfeld, and J. A. Dantzig. Adaptive grid methods in solidification microstructure modeling. Phys. Rev. Lett. 80 (1998), 3308-3311.

Cited By

View all
  • (2024)Approximation by Meshes with Spherical FacesACM Transactions on Graphics10.1145/368794243:6(1-18)Online publication date: 19-Dec-2024
  • (2023)Meshes with Spherical FacesACM Transactions on Graphics10.1145/361834542:6(1-19)Online publication date: 5-Dec-2023
  • (2021)Triangulating Submanifolds: An Elementary and Quantified Version of Whitney’s MethodDiscrete & Computational Geometry10.1007/s00454-020-00250-866:1(386-434)Online publication date: 1-Jul-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 25, Issue 4
April 2001
133 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2001

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Approximation by Meshes with Spherical FacesACM Transactions on Graphics10.1145/368794243:6(1-18)Online publication date: 19-Dec-2024
  • (2023)Meshes with Spherical FacesACM Transactions on Graphics10.1145/361834542:6(1-19)Online publication date: 5-Dec-2023
  • (2021)Triangulating Submanifolds: An Elementary and Quantified Version of Whitney’s MethodDiscrete & Computational Geometry10.1007/s00454-020-00250-866:1(386-434)Online publication date: 1-Jul-2021
  • (2015)Simple and branched skins of systems of circles and convex shapesGraphical Models10.1016/j.gmod.2014.12.00178:C(1-9)Online publication date: 1-Mar-2015
  • (2012)On Simplifying Deformation of Smooth Manifolds Defined by Large Weighted Point SetsRevised Selected Papers of the Thailand-Japan Joint Conference on Computational Geometry and Graphs - Volume 829610.1007/978-3-642-45281-9_15(150-161)Online publication date: 6-Dec-2012
  • (2011)Computing elevation maxima by searching the gauss sphereACM Journal of Experimental Algorithmics10.1145/1963190.197037516(2.1-2.13)Online publication date: 27-Jul-2011
  • (2010)Anisotropic mesh adaptation for evolving triangulated surfacesEngineering with Computers10.5555/3225288.322557926:4(363-376)Online publication date: 1-Aug-2010
  • (2010)Polygonal surface remeshing with Delaunay refinementEngineering with Computers10.5555/3225282.322553726:3(289-301)Online publication date: 1-Jun-2010
  • (2009)Adaptive surface meshes coarsening with guaranteed quality and topologyProceedings of the 2009 Computer Graphics International Conference10.1145/1629739.1629746(53-61)Online publication date: 26-May-2009
  • (2009)Quality mesh generation for molecular skin surfaces using restricted union of ballsComputational Geometry: Theory and Applications10.1016/j.comgeo.2008.10.00142:3(196-206)Online publication date: 1-Apr-2009
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media