Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Approximation by Meshes with Spherical Faces

Published: 19 November 2024 Publication History

Abstract

Meshes with spherical faces and circular edges are an attractive alternative to polyhedral meshes for applications in architecture and design. Approximation of a given surface by such a mesh needs to consider the visual appearance, approximation quality, the position and orientation of circular intersections of neighboring faces and the existence of a torsion free support structure that is formed by the planes of circular edges. The latter requirement implies that the mesh simultaneously defines a second mesh whose faces lie on the same spheres as the faces of the first mesh. It is a discretization of the two envelopes of a sphere congruence, i.e., a two-parameter family of spheres. We relate such sphere congruences to torsal parameterizations of associated line congruences. Turning practical requirements into properties of such a line congruence, we optimize line and sphere congruence as a basis for computing a mesh with spherical triangular or quadrilateral faces that approximates a given reference surface.

References

[1]
Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. 2001. The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19, 2--3 (jul 2001), 127--153.
[2]
Wilhelm Blaschke. 1929. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band III. Differentialgeometrie der Kreise und Kugeln. Springer, Berlin.
[3]
Wilhelm Blaschke. 1930. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band I. Elementare Differentialgeometrie. Springer, Berlin.
[4]
Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proc. Eurographics Symposium on Geometry Processing. Eurographics Assoc., 101--110.
[5]
Alexander I. Bobenko and Yuri B. Suris. 2006. Isothermic surfaces in sphere geometries as Moutard nets. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 463 (2006), 3171--3193.
[6]
Alexander I. Bobenko and Yury B. Suris. 2007. On organizing principles of discrete differential geometry. Geometry of spheres. Russian Mathematical Surveys 62, 1 (2007), 1--43.
[7]
Alexander I. Bobenko and Yuri B. Suris. 2008. Discrete differential geometry. Integrable structure. Graduate Studies in Mathematics, Vol. 98. American Mathematical Society.
[8]
Peter B. Canham. 1970. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of theoretical biology 26 1 (1970), 61--81.
[9]
Frederic Cazals and Marc Pouget. 2005. Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design 22, 2 (2005), 121--146.
[10]
Ho-Lun Cheng and Xinwei Shi. 2005. Quality Mesh Generation for Molecular Skin Surfaces Using Restricted Union of Balls. In 16th IEEE Visualization Conference, Proceedings. IEEE Computer Society, 399--405.
[11]
Ho-Lun Cheng, Tamal K. Dey, Herbert Edelsbrunner, and John Sullivan. 2001. Dynamic Skin Triangulation. Discrete Comput. Geom. 25, 4 (2001), 525--568.
[12]
Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32 (2013). Issue 4.
[13]
Manfredo do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.
[14]
Marc Droske and Martin Rumpf. 2004. A level set formulation for Willmore flow. Interfaces and Free Boundaries 6 (2004), 361--378.
[15]
Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (2013), 1--10.
[16]
Herbert Edelsbrunner. 1993. The Union of Balls and Its Dual Shape. In Proceedings of the Ninth Annual Symposium on Computational Geometry (San Diego, California, USA) (SCG '93). Association for Computing Machinery, 218--231.
[17]
Herbert Edelsbrunner. 1999. Deformable smooth surface design. Discrete Comput. Geom. 21 (1999), 87--115.
[18]
Gershon Elber, Gill Barequet, and Myung-Soo Kim. 1999. Bisectors and alpha-Sectors of Rational Varieties. In Geometric Modelling. Springer-Verlag, Berlin, Heidelberg, 73--88.
[19]
Gershon Elber and Myung-Soo Kim. 2000. A computational model for nonrational bisector surfaces: curve-surface and surface-surface bisectors. In Proceedings Geometric Modeling and Processing 2000. Theory and Applications. 364--372.
[20]
Evan Anthony Evans. 1974. Bending resistance and chemically induced moments in membrane bilayers. Biophysical journal 14 (1974), 923--931.
[21]
Stephen William Hawking. 1968. Gravitational radiation in an expanding universe. J. Math. Phys. 9 (1968), 598--604.
[22]
Udo Hertrich-Jeromin. 2003. Introduction to Möbius Differential Geometry. Cambridge University Press.
[23]
Elias Jadon, Bernhard Thomaszewski, Aleksandra Anna Apolinarska, and Roi Poranne. 2022. Continuous Deformation Based Panelization for Design Rationalization. ACM Trans. Graph., Article 44 (2022), 8 pages.
[24]
Caigui Jiang, Hui Wang, Victor Ceballos Inza, Felix Dellinger, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2021. Using isometries for computational design and fabrication. ACM Trans. Graph. 40, 4 (2021), 42:1--42:12. Proc. SIGGRAPH.
[25]
Martin Kilian, Anthony Ramos Cisneros, Christian Müller, and Helmut Pottmann. 2023. Meshes with spherical faces. ACM Trans. Graph. 42, 6 (2023), 177:1--177:19.
[26]
Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Yousuf Soliman. 2023. Rolling spheres and the Willmore energy. arXiv:2311.02241 [math.DG]
[27]
Leif P. Kobbelt, Thilo Bareuther, and Hans-Peter Seidel. 2000. Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity. Computer Graphics Forum 19, 3 (2000), 249--260.
[28]
Thomas Koerber. 2020. The Area Preserving Willmore Flow and Local Maximizers of the Hawking Mass in Asymptotically Schwarzschild Manifolds. The Journal of Geometric Analysis 31 (2020), 3455--3497.
[29]
Mina Konakovic-Lukovic, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid deployment of curved surfaces via programmable auxetics. ACM Trans. Graph. 37 (2018), 1--13.
[30]
Donald W. Marquardt. 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 11, 2 (1963), 431--441.
[31]
Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame fields: anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4, Article 134 (2014), 11 pages.
[32]
Davide Pellis, Hui Wang, Martin Kilian, Florian Rist, Helmut Pottmann, and Christian Müller. 2020. Principal symmetric meshes. ACM Trans. Graph. 39, 4 (2020), 127:1--127:17. Proc. SIGGRAPH.
[33]
Martin Peternell. 2000. Geometric Properties of Bisector Surfaces. Graph. Model. 62 (2000), 202--236.
[34]
Helmut Pottmann, Caigui Jiang, Mathias Höbinger, Jun Wang, Philippe Bompas, and Johannes Wallner. 2015. Cell packing structures. Computer-Aided Design 60 (2015), 70--83. Special issue on Material Ecology.
[35]
Helmut Pottmann and Martin Peternell. 2000. Envelopes - Computational Theory and Applications. In Spring Conference on Computer Graphics 2000, B. Falcidieno (Ed.). Comenius University, Bratislava, 3--23. Proceedings of the conference in Budmerice, May 3--6, 2000.
[36]
Helmut Pottmann and Johannes Wallner. 2001. Computational Line Geometry. Springer.
[37]
Thilo Rörig and Gudrun Szewieczek. 2021. The Ribaucour families of discrete R-congruences. Geom. Dedicata 214 (2021), 251--275.
[38]
Kaleem Siddiqi and Stephen M. Pizer. 2008. Medial Representations: Mathematics, Algorithms and Applications (Computational Imaging and Vision, Vol. 37). Springer.
[39]
Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2021. Constrained Willmore Surfaces. ACM Trans. Graph. 40, 4, Article 112 (2021), 17 pages.
[40]
Svetlana Stolpner, Paul Kry, and Kaleem Siddiqi. 2012. Medial Spheres for Shape Approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 6 (2012), 1234--1240.
[41]
Feng Sun, Yi-King Choi, Yizhou Yu, and Wenping Wang. 2013. Medial Meshes for Volume Approximation. ArXiv abs/1308.3917 (2013).
[42]
Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graph. 33, 4 (2014), 70:1--70:9.
[43]
Jean-Marc Thiery, Emilie Guy, and Tamy Boubekeur. 2013. Sphere-Meshes: Shape Approximation using Spherical Quadric Error Metrics. ACM Trans. Graph. 32, 6 (2013), 178:1--178:12.
[44]
Jean-Marc Thiery, Émilie Guy, Tamy Boubekeur, and Elmar Eisemann. 2016. Animated Mesh Approximation with Sphere-Meshes. ACM Trans. Graph. 35, 3 (2016), 30:1--30:13.
[45]
G. Thomsen. 1924. Grundlagen der konformen flächentheorie. Abh. Math. Sem. Univ. Hamburg 3, 1 (1924), 31--56.
[46]
Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-Meshes for Real-Time Hand Modeling and Tracking. ACM Trans. Graph. 35, 6 (2016), 222:1--222:11.
[47]
Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. 2022. Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces. ACM Trans. Graph. 41, 3, Article 29 (2022), 18 pages.
[48]
Rui Wang, Kun Zhou, John Snyder, Xinguo Liu, Hujun Bao, Qunsheng Peng, and Baining Guo. 2006. Variational sphere set approximation for solid objects. The Visual Computer, 22(9): 612--621. The Visual Computer 22 (09 2006), 612--621.
[49]
Jianhua Wu and Leif Kobbelt. 2005. Structure Recovery via Hybrid Variational Surface Approximation. Computer Graphics Forum 24 (2005).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 6
December 2024
1828 pages
EISSN:1557-7368
DOI:10.1145/3702969
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 November 2024
Published in TOG Volume 43, Issue 6

Check for updates

Author Tags

  1. discrete differential geometry
  2. architectural geometry
  3. computational design
  4. sphere geometry
  5. sphere mesh
  6. spherical panels

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 150
    Total Downloads
  • Downloads (Last 12 months)150
  • Downloads (Last 6 weeks)150
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media