Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Meshes with Spherical Faces

Published: 05 December 2023 Publication History
  • Get Citation Alerts
  • Abstract

    Discrete surfaces with spherical faces are interesting from a simplified manufacturing viewpoint when compared to other double curved face shapes. Furthermore, by the nature of their definition they are also appealing from the theoretical side leading to a Möbius invariant discrete surface theory. We therefore systematically describe so called sphere meshes with spherical faces and circular arcs as edges where the Möbius transformation group acts on all of its elements. Driven by aspects important for manufacturing, we provide the means to cluster spherical panels by their radii. We investigate the generation of sphere meshes which allow for a geometric support structure and characterize all such meshes with triangular combinatorics in terms of non-Euclidean geometries. We generate sphere meshes with hexagonal combinatorics by intersecting tangential spheres of a reference surface and let them evolve - guided by the surface curvature - to visually convex hexagons, even in negatively curved areas. Furthermore, we extend meshes with circular faces of all combinatorics to sphere meshes by filling its circles with suitable spherical caps and provide a remeshing scheme to obtain quadrilateral sphere meshes with support structure from given sphere congruences. By broadening polyhedral meshes to sphere meshes we exploit the additional degrees of freedom to minimize intersection angles of neighboring spheres enabling the use of spherical panels that provide a softer perception of the overall surface.

    References

    [1]
    Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Kateřina Čech Dobiášová, Bert Jüttler, and Günter Rote. 2015. Triangulations with Circular Arcs. Journal of Graph Algorithms and Applications 19, 1 (2015), 43--65.
    [2]
    Wilhelm Blaschke. 1929. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band III. Differentialgeometrie der Kreise und Kugeln. Springer, Berlin.
    [3]
    Wilhelm Blaschke and Kurt Leichtweiß. 1973. Elementare Differentialgeometrie. Springer, Berlin-New York. Fünfte vollständig neubearbeitete Auflage von K. Leichtweiß, Die Grundlehren der mathematischen Wissenschaften, Band 1.
    [4]
    Pengbo Bo, Helmut Pottmann, Martin Kilian, Wenping Wang, and Johannes Wallner. 2011. Circular Arc Structures. ACM Trans. Graph. 30, 4 (2011), 101:1--101:11.
    [5]
    Alexander Bobenko and Yuri Suris. 2006. Isothermic surfaces in sphere geometries as Moutard nets. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 463 (2006), 3171--3193.
    [6]
    Alexander I. Bobenko and Emanuel Huhnen-Venedey. 2012. Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides. Geom. Dedicata 159 (2012), 207--237.
    [7]
    Alexander I. Bobenko, Helmut Pottmann, and Johannes Wallner. 2010. A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348, 1 (2010), 1--24.
    [8]
    Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proc. Eurographics Symposium on Geometry Processing. Eurographics Assoc., 101--110.
    [9]
    Alexander I. Bobenko and Yury B. Suris. 2007. On organizing principles of discrete differential geometry. Geometry of spheres. Russian Mathematical Surveys 62, 1 (2007), 1--43.
    [10]
    Alexander I. Bobenko and Yuri B. Suris. 2008. Discrete differential geometry. Integrable structure. Graduate Studies in Mathematics, Vol. 98. American Mathematical Society.
    [11]
    Frederic Cazals and Marc Pouget. 2005. Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design 22, 2 (2005), 121--146.
    [12]
    Ho-Lun Cheng and Xinwei Shi. 2005. Quality Mesh Generation for Molecular Skin Surfaces Using Restricted Union of Balls. In 16th IEEE Visualization Conference, Proceedings. IEEE Computer Society, 399--405.
    [13]
    Ho-Lun Cheng, Tamal K. Dey, Herbert Edelsbrunner, and John Sullivan. 2001. Dynamic Skin Triangulation. Discrete Comput. Geom. 25, 4 (2001), 525--568.
    [14]
    Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32 (2013). Issue 4.
    [15]
    Herbert Edelsbrunner. 1993. The Union of Balls and Its Dual Shape. In Proceedings of the Ninth Annual Symposium on Computational Geometry (SCG '93). Association for Computing Machinery, 218--231.
    [16]
    Herbert Edelsbrunner. 1999. Deformable smooth surface design. Discrete Comput. Geom. 21 (1999), 87--115.
    [17]
    Herbert Edelsbrunner and John L. Harer. 2010. Computational Topology: An Introduction. American Math. Soc.
    [18]
    Herbert Edelsbrunner and Ernst P. Mücke. 1994. Three-Dimensional Alpha Shapes. 13, 1 (1994), 43--72.
    [19]
    Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut Pottmann, and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. Graph. 29, 4 (2010), 45:1--45:10.
    [20]
    Luther Pfahler Eisenhart. 1962. Transformations of surfaces (second ed.). Chelsea Publishing Co., New York. xi+379 pages.
    [21]
    Gaël Guennebaud and Markus Gross. 2007. Algebraic Point Set Surfaces. ACM Trans. Graph. 26, 3 (2007), 10.
    [22]
    Udo Hertrich-Jeromin. 2003. Introduction to Möbius Differential Geometry. Cambridge University Press.
    [23]
    Elias Jadon, Bernhard Thomaszewski, Aleksandra Anna Apolinarska, and Roi Poranne. 2022. Continuous Deformation Based Panelization for Design Rationalization. ACM Transaction on Graphics (Proc. SIGGRAPH Asia 2022), Article 44 (2022), 8 pages.
    [24]
    Caigui Jiang, Hui Wang, Victor Ceballos Inza, Felix Dellinger, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2021. Using isometries for computational design and fabrication. ACM Trans. Graphics 40, 4 (2021), 42:1--42:12. Proc. SIGGRAPH.
    [25]
    Felix Klein. 1968. Vorlesungen über nicht-euklidische Geometrie. Springer-Verlag, Berlin. xii+326 pages.
    [26]
    Daoming Liu, Davide Pellis, Yu-Chou Chiang, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2023. Deployable strip structures. ACM Trans. Graphics 42, 4 (2023), xx:1--xx:16. Proc. SIGGRAPH.
    [27]
    Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25, 3 (2006), 681--689. Proc. SIGGRAPH.
    [28]
    Donald W. Marquardt. 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 11, 2 (1963), 431--441.
    [29]
    Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 33, 4 (2014), 134:1--134:11.
    [30]
    Davide Pellis, Martin Kilian, Felix Dellinger, Johannes Wallner, and Helmut Pottmann. 2019. Visual smoothness of polyhedral surfaces. ACM Trans. Graphics 38, 4 (2019), 260:1--260:11. Proc. SIGGRAPH.
    [31]
    Davide Pellis, Martin Kilian, Helmut Pottmann, and Mark Pauly. 2021. Computational design of Weingarten surfaces. ACM Trans. Graphics 40, 4 (2021), 114:1--114:11.
    [32]
    Davide Pellis, Hui Wang, Martin Kilian, Florian Rist, Helmut Pottmann, and Christian Müller. 2020. Principal symmetric meshes. ACM Trans. Graphics 39, 4 (2020), 127:1--127:17. Proc. SIGGRAPH.
    [33]
    Kacper Pluta, Michal Edelstein, Amir Vaxman, and Mirela Ben-Chen. 2021. PH-CPF: Planar Hexagonal Meshing Using Coordinate Power Fields. ACM Trans. Graph. 40, 4, Article 156 (2021), 19 pages.
    [34]
    Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Computers and Graphics 47 (2015), 145--164.
    [35]
    Helmut Pottmann and Martin Peternell. 2000. Envelopes - Computational Theory and Applications. In Spring Conference on Computer Graphics 2000, B. Falcidieno (Ed.). Comenius University, Bratislava, 3--23. Proceedings of the conference in Budmerice, May 3--6, 2000.
    [36]
    Thilo Rörig and Gudrun Szewieczek. 2021. The Ribaucour families of discrete R-congruences. Geom. Dedicata 214 (2021), 251--275.
    [37]
    Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2021. Constrained Willmore Surfaces. ACM Trans. Graph. 40, 4, Article 112 (2021), 17 pages.
    [38]
    Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graph. 33, 4 (2014), 70:1--70:9.
    [39]
    Jean-Marc Thiery, Emilie Guy, and Tamy Boubekeur. 2013. Sphere-Meshes: Shape Approximation using Spherical Quadric Error Metrics. ACM Transaction on Graphics (Proc. SIGGRAPH Asia 2013) 32, 6 (2013), 178:1--178:12.
    [40]
    Jean-Marc Thiery, Émilie Guy, Tamy Boubekeur, and Elmar Eisemann. 2016. Animated Mesh Approximation With Sphere-Meshes. ACM Trans. Graph. 35, 3 (2016), 30:1--30:13.
    [41]
    Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-Meshes for Real-Time Hand Modeling and Tracking. ACM Trans. Graph. 35, 6 (2016), 222:1--222:11.
    [42]
    Christian Troche. 2008. Planar hexagonal meshes by tangent plane intersection. Advances in Architectural Geometry 1 (01 2008), 57--60.
    [43]
    Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal Mesh Deformations with Möbius Transformations. ACM Trans. Graph. 33, 4 (2015), 55:1--55:11.
    [44]
    Amir Vaxman, Christian Müller, and Ofir Weber. 2018. Canonical Möbius Subdivision. ACM Trans. Graph. 37, 6 (2018), 227:1--227:15.
    [45]
    Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller. 2019. Discrete geodesic parallel coordinates. ACM Trans. Graph. 38, 6 (2019), 173:1--173:13.
    [46]
    Henrik Zimmer, Marcel Campen, Ralf Herkrath, and Leif Kobbelt. 2013. Variational Tangent Plane Intersection for Planar Polygonal Meshing. In Advances in Architectural Geometry 2012, Lars Hesselgren et al. (Ed.). Springer Vienna, Vienna, 319--332.

    Index Terms

    1. Meshes with Spherical Faces

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 6
      December 2023
      1565 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3632123
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 05 December 2023
      Published in TOG Volume 42, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. architectural geometry
      2. computational design
      3. discrete differential geometry
      4. sphere geometry
      5. sphere mesh
      6. spherical paneling

      Qualifiers

      • Research-article

      Funding Sources

      • Austrian Science Fund (FWF)
      • KAUST baseline funding

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 479
        Total Downloads
      • Downloads (Last 12 months)479
      • Downloads (Last 6 weeks)55
      Reflects downloads up to 27 Jul 2024

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media