Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A CNTFET-C first order all pass filter

Published: 01 August 2019 Publication History

Abstract

A compact, low voltage, low power and high frequency voltage mode first order all-pass-filter (APF) topology is presented using carbon nanotube field effect transistor (CNTFET) based inverting voltage buffer. The proposed resistor-less APF topology uses only one capacitor and two N-type CNTFETs. Adding one CNTFET based voltage controlled resistor to the proposed first order APF results into an electronically controlled first order APF with a tuneable frequency range between 1.913 and 40.2 GHz. The proposed circuits are potential candidate for low voltage analog applications as it uses only two transistors between its supply rails. Moreover, both the proposed topologies do not have any passive component matching constraint. The realized filter circuit performance is verified with HSPICE simulations, using well known Deng's CNTFET model at 16 nm technology node with supply voltage of 0.7 V. The simulation results substantiate the theoretical predictions.

References

[1]
Pandey, N., Arora, P., Kapur, S., & Malhotra, S. (2011). First order voltage mode MO-CCCCTA based all pass filter. In Proceedings of the international conference on communications and signal processing. ICCSP 2011, Calicut, India (pp. 535---537).
[2]
Herencsar, N., Koton, J., Vrba, K., & Minaei, S. (2011). Electronically tunable MOSFET-C voltage-mode all-pass filter based on universal voltage conveyor. In Proceedings of the 3rd international conference on communication software and networks. ICCSN 2011, Xi'an, China (pp. 442---445).
[3]
Herencsar, N., Koton, J., Jerabek, J., Vrba, K., & Cicekoglu, O. (2011). Voltage-mode all-pass filters using universal voltage conveyor and MOSFET-based electronic resistors. Radioengineering,20(1), 10---18.
[4]
Herencsar, N., Koton, J., & Vrba, K. (2009). A new electronically tunable voltage-mode active-C phase shifter using UVC and OTA. IEICE Electron. Express,6(17), 1212---1218.
[5]
Minaei, S., & Yuce, E. (2010). Novel voltage-mode all-pass filter based on using DVCCs. Circuits Syst. Signal Process.,29(3), 391---402.
[6]
Horng, J.-W. (2010). DVCCs based high input impedance voltage-mode first-order allpass, highpass and lowpass filters employing grounded capacitor and resistor. Radioengineering,19(4), 653---656.
[7]
Minaei, S., & Cicekoglu, O. (2006). A resistorless realization of the first-order all-pass filter. Int. J. Electron.,93(03), 177---183.
[8]
Kumar, P., Keskin, A., & Pal, K. (2007). Wide-band resistorless all-pass sections with single element tuning. Int. J. Electron.,94(6), 597---604.
[9]
Biolkova, V., Kolka, Z., & Biolek, D. (2011). Dual-output all-pass filter employing fully-differential operational amplifier and current-controlled current conveyor. In Proceedings of the 7th international conference on electrical and electronics engineering-ELECO, 2011, Bursa, Turkey (pp. 340---344).
[10]
Metin, B., Pal, K., & Cicekoglu, O. (2011). All-pass filters using DDCC-and MOSFET-based electronic resistor. Int. J. Circuit Theory Appl.,39(8), 881---891.
[11]
Metin, B., & Pal, K. (2010). New all-pass filter circuit compensating for C-CDBA non-idealities. J. Circuits Syst. Comput.,19(02), 381---391.
[12]
Kumngern, M., Chanwutitum, J., & Dejhan, K. (2008). Electronically tunable voltage-mode all-pass filter using simple CMOS OTAs. In Proceedings of the 2008 international symposium on communications and information technologies. ISCIT, 2008, Lao, China (pp. 1---5).
[13]
Tanaphatsiri, C., Jaikla, W., & Siripruchyanun, M. (2008). An electronically controllable voltage-mode first-order all-pass filter using only single CCCDTA. In Proceedings of the 2008 international symposium on communications and information technologies. ISCIT, 2008, Lao, China (pp. 305---309).
[14]
Herencsar, N., Koton, J., Vrba, K., & Metin, B. (2011). Novel voltage conveyor with electronic tuning and its application to resistorless all-pass filter. In Proceedings of the 34th international Conference on Telecommunications and Signal processing. TSP, 2011, Budapest, Hungary (pp. 265---268).
[15]
Metin, B., Pal, K., & Cicekoglu, O. (2011). CMOS-controlled inverting CDBA with a new all-pass filter application. Int. J. Circuit Theory Appl.,39(4), 417---425.
[16]
Metin, B., Herencsar, N., & Cicekoglu, O. (2013). A low-voltage electronically tunable MOSFET-C voltage-mode first-order all-pass filter design. Radioengineering,22(4), 985---994.
[17]
Yuce, E., & Minaei, S. (2012). Derivation of low-power first-order low-pass, high-pass and all-pass filters. Analog Integr. Circuits Signal Process.,70(1), 151---156.
[18]
Yuce, E., & Minaei, S. (2010). A novel phase shifter using two NMOS transistors and passive elements. Analog Integr. Circuits Signal Process.,62(1), 77.
[19]
Maundy, B. J., & Aronhime, P. (2002). A novel CMOS first-order all-pass filter. Int. J. Electron.,89(9), 739---743.
[20]
Metin, B., & Cicekoglu, O. (2008). Tunable all-pass filter with a single inverting voltage buffer. In Proceedings of the 2008 Ph.D. research in microelectronics and electronics-PRIME, 2008, Istanbul, Turkey (pp. 261---263).
[21]
Yuce, E. (2010). A novel CMOS-based voltage-mode first-order phase shifter employing a grounded capacitor. Circuits Syst. Signal Process.,29(2), 235---245.
[22]
Toker, A., & Özo?uz, S. (2003). Tunable allpass filter for low voltage operation. Electron. Lett.,39(2), 175---176.
[23]
Herencsar, N., Minaei, S., Koton, J., Yuce, E., & Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integr. Circuit Signal Process.,74(1), 141---154.
[24]
Yücel, F., & Yuce, E. (2016). A new electronically tunable first-order all-pass filter using only three NMOS transistors and a capacitor. Turk. J. Electr. Eng. Comput. Sci.,24(4), 3286---3292.
[25]
Minaei, S., & Yuce, E. (2012). High input impedance NMOS-based phase shifter with minimum number of passive elements. Circuits Syst. Signal Process.,31(1), 51---60.
[26]
Herencsar, N., Minaei, S., Koton, J., & Vrba, K. (2015). Voltage-mode all-pass filter design using simple CMOS transconductor: Non-ideal case study. In Proceedings of the 38th international conference on telecommunications and signal processing. TSP, 2015, Prague, Czech Republic (pp. 677---681).
[27]
Frank, D. J., Dennard, R. H., Nowak, E., Solomon, P. M., Taur, Y., & Wong, H.-S. P. (2001). Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE,89(3), 259---288.
[28]
Kuhn, K. J. (2012). Considerations for ultimate CMOS scaling. IEEE Transactions on Electron Devices,59(7), 1813---1828.
[29]
Schröter, M., Claus, M., Hermann, S., Tittman-Otto, J., Haferlach, M., Mothes, S., et al. (2016). CNTFET-based RF electronics--State-of-the-art and future prospects. In IEEE 16th topical meeting on silicon monolithic integrated circuits in RF systems. SiRF, 2016, Austin, USA (pp. 97---100).
[30]
Voinigescu, S. P., Tomkins, A., Dacquay, E., Chevalier, P., Hasch, J., Chantre, A., et al. (2013). A study of SiGe HBT signal sources in the 220---330-GHz range. IEEE Journal of Solid-State Circuits,48(9), 2011---2021.
[31]
Hayat, K., Cheema, H., & Shamim, A. (2013). Potential of carbon nanotube field effect transistors for analogue circuits. The Journal of Engineering. https://doi.org/10.1049/joe.2013.0067.
[32]
Imran, A., Hasan, M., Islam, A., & Abbasi, S. A. (2012). Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII. IEEE Transactions on Nanotechnology,11(6), 1100---1109.
[33]
Tripathi, S., Ansari, M. S., & Joshi, A. M. (2017). Low-noise tunable band-pass filter for ISM 2.4 GHz bluetooth transceiver in?±?0.7 V 32 nm CNFET technology. In Proceedings of the 2017 international conference on data engineering and communication technology, 2017, Singapore (pp. 435---443).
[34]
Nizamuddin, M., Loan, S. A., Alamoud, A. R., & Abbassi, S. A. (2015). Design, simulation and comparative analysis of CNT based cascode operational transconductance amplifiers. Nanotechnology,26(39), 395201.
[35]
Loan, S. A., Nizamuddin, M., Alamoud, A. R., & Abbasi, S. A. (2015). Design and comparative analysis of high performance carbon nanotube-based operational transconductance amplifiers. NANO,10(03), 1550039.
[36]
Sharma, J., Ansari, M. S., & Sharma, J. (2014). Current-mode electronically tunable resistor-less universal filter in?±?0.5 V 32 Nm CNFET. In Proceedings of the 2014 international conference on devices, circuits and communications. ICDCCom, 2014, Ranchi, India (pp. 1---6).
[37]
Sharma, J., Ansari, M. S., & Sharma, J. (2014). Electronically tunable resistor-less universal filter in?±?0.5 V 32 nm CNFET. In Proceedings of the 2014 international symposium on electronic system design. ISED, 2014, Surathkal, India (pp. 206---207).
[38]
Natori, K., Kimura, Y., & Shimizu, T. (2005). Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor. Journal of Applied Physics,97(3), 034306.
[39]
Guo, J., Lundstrom, M., & Datta, S. (2002). Performance projections for ballistic carbon nanotube field-effect transistors. Applied Physics Letters,80(17), 3192---3194.
[40]
Deng, J., & Wong, H.-S. P. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application--Part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices,54(12), 3186---3194.
[41]
Deng, J., & Wong, H.-S. P. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application--Part II: Full device model and circuit performance benchmarking. IEEE Transactions on Electron Devices,54(12), 3195---3205.
[42]
Sun, Y., & Kursun, V. (2011). N-type carbon-nanotube MOSFET device profile optimization for very large scale integration. Transactions on Electrical and Electronic Materials,12(2), 43---50.

Cited By

View all
  • (2021)CNTFET based Voltage Mode MISO Active only Biquadratic Filter for Multi-GHz Frequency ApplicationsCircuits, Systems, and Signal Processing10.1007/s00034-021-01699-540:10(4721-4740)Online publication date: 1-Oct-2021

Index Terms

  1. A CNTFET-C first order all pass filter
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Analog Integrated Circuits and Signal Processing
            Analog Integrated Circuits and Signal Processing  Volume 100, Issue 2
            August 2019
            258 pages

            Publisher

            Kluwer Academic Publishers

            United States

            Publication History

            Published: 01 August 2019

            Author Tags

            1. CNTFET
            2. Electronically tuneable
            3. Phase shifter
            4. Voltage mode

            Qualifiers

            • Article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 03 Sep 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2021)CNTFET based Voltage Mode MISO Active only Biquadratic Filter for Multi-GHz Frequency ApplicationsCircuits, Systems, and Signal Processing10.1007/s00034-021-01699-540:10(4721-4740)Online publication date: 1-Oct-2021

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media