Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Effect of Kinesthetic and Artificial Tactile Noise and Variability on Stiffness Perception

Published: 01 April 2022 Publication History

Abstract

Robot-assisted minimally invasive surgeries (RAMIS) have many benefits. A disadvantage, however, is the lack of haptic feedback. Haptic feedback is comprised of kinesthetic and tactile information, and we use both to form stiffness perception. Applying both kinesthetic and tactile feedback can enable more precise feedback than kinesthetic feedback alone. However, during remote surgeries, haptic noises and variations can be present. Therefore, toward designing haptic feedback for RAMIS, it is important to understand the effect of haptic manipulations on stiffness perception. We assessed the effect of two manipulations using stiffness discrimination tasks in which participants received force feedback and artificial skin stretch. In Experiment 1, we added sinusoidal noise to the artificial tactile signal, and found that the noise did not affect participants’ stiffness perception or uncertainty. In Experiment 2, we varied either the kinesthetic or the artificial tactile information between consecutive interactions with an object. We found that the both forms of variability did not affect stiffness perception, but kinesthetic variability increased participants’ uncertainty. We show that haptic feedback, comprised of force feedback and artificial skin stretch, provides robust haptic information even in the presence of noise and variability, and hence can potentially be both beneficial and viable in RAMIS.

References

[1]
G. S. Guthart and J. K. Salisbury, “The intuitive/sup TM/telesurgery system: Overview and application,” in Proc. ICRA. Millennium Conf. IEEE Int. Conf. Robot. Automat. Symposia Proc., 2000, pp. 618–621.
[2]
A. Hussain, A. Malik, M. U. Halim, and A. M. Ali, “The use of robotics in surgery: A review,”Int. J. Clin. Pract., vol. 68, no. 11, pp. 1376–1382, Nov.2014.
[3]
A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers, “Robotic surgery: A current perspective,”Ann. Surg., vol. 239, no. 1, pp. 14–21, Jan.2004.
[4]
A. Szold, et al., “European association of endoscopic surgeons (EAES) consensus statement on the use of robotics in general surgery,”Surg. Endoscopy, vol. 29, no. 2, pp. 253–288, 2015.
[5]
A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive surgery,”Curr. Opin. Urol., vol. 19, no. 1, pp. 102–107, 2009.
[6]
I. Nisky, F. A. Mussa-Ivaldi, and A. Karniel, “Analytical study of perceptual and motor transparency in bilateral teleoperation,”IEEE Trans. Human-Mach. Syst., vol. 43, no. 6, pp. 570–582, Nov.2013.
[7]
R. Nomberg and I. Nisky, “Human-in-the-loop stability analysis of haptic rendering with time delay by tracking the roots of the characteristic quasi-polynomial: The effect of ARM impedance,”IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 7564–7571, Oct.2021.
[8]
O. A. Van der Meijden and M. P. Schijven, “The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review,”Surg. Endoscopy, vol. 23, no. 6, pp. 1180–1190, 2009.
[9]
G. Robles-De-La-Torre, “The importance of the sense of touch in virtual and real environments,”IEEE Multimedia, vol. 13, no. 3, pp. 24–30, Jul.-Sep.2006.
[10]
A. Frisoli, M. Solazzi, F. Salsedo, and M. Bergamasco, “A fingertip haptic display for improving curvature discrimination,”Presence: Teleoperators Virtual Environments, vol. 17, no. 6, pp. 550–561, 2008.
[11]
A. Bolopion and S. Régnier, “A review of haptic feedback teleoperation systems for micromanipulation and microassembly,”IEEE Trans. Automat. Sci. Eng., vol. 10, no. 3, pp. 496–502, Jul.2013.
[12]
L. N. Verner and A. M. Okamura, “Effects of translational and gripping force feedback are decoupled in a 4-degree-of-freedom telemanipulator,” in Proc. IEEE 2nd Joint EuroHaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst., 2007, pp. 286–291.
[13]
L. Santos-Carreras, R. Beira, A. Sengül, R. Gassert, and H. Bleuler, “Influence of force and torque feedback on operator performance in a VR-based suturing task,”Appl. Bionics Biomech., vol. 7, no. 3, pp. 217–230, 2010.
[14]
L. Bahar, Y. Sharon, and I. Nisky, “Surgeon-centered analysis of robot-assisted needle driving under different force feedback conditions,”Front. Neurorobot., vol. 13, Jan. 2020.
[15]
L. Moody, C. Baber, and T. N. Arvanitis, “Objective surgical performance evaluation based on haptic feedback,”Stud. Health Technol. Informat., vol. 85, pp. 304–310, 2002.
[16]
B. T. Bethea, et al., “Application of haptic feedback to robotic surgery,”J. Laparoendoscopic Adv. Surg. Techn., vol. 14, no. 3, pp. 191–195, 2004.
[17]
K. Den Boer, J. Herder, W. Sjoerdsma, D. Meijer, D. Gouma, and H. Stassen, “Sensitivity of laparoscopic dissectors,”Surg. Endoscopy, vol. 13, no. 9, pp. 869–873, 1999.
[18]
P. Lamata, E. Gómez, F. Sánchez-Margallo, F. Lamata, F. Del Pozo, and J. Usón, “Tissue consistency perception in laparoscopy to define the level of fidelity in virtual reality simulation,”Surg. Endoscopy Other Interventional Techn., vol. 20, no. 9, pp. 1368–1375, 2006.
[19]
G. Tholey, J. P. Desai, and A. E. Castellanos, “Force feedback plays a significant role in minimally invasive surgery: Results and analysis,”Ann. Surg., vol. 241, no. 1, pp. 102–109, 2005.
[20]
J. Rosen, B. Hannaford, M. P. MacFarlane, and M. N. Sinanan, “Force controlled and teleoperated endoscopic grasper for minimally invasive surgery-experimental performance evaluation,”IEEE Trans. Biomed. Eng., vol. 46, no. 10, pp. 1212–1221, Oct.1999.
[21]
R. D. Howe, W. J. Peine, D. Kantarinis, and J. S. Son, “Remote palpation technology,”IEEE Eng. Med. Biol. Mag., vol. 14, no. 3, pp. 318–323, May-Jun.1995.
[22]
W. H. Chapman Iii, R. J. Albrecht, V. B. Kim, J. A. Young, and W. R. Chitwood Jr., “Computer-assisted laparoscopic splenectomy with the da vinci surgical robot,”J. Laparoendoscopic Adv. Surg. Techn., vol. 12, no. 3, pp. 155–159, 2002.
[23]
G. T. Sung and I. S. Gill, “Robotic laparoscopic surgery: A comparison of the da vinci and zeus systems,”Urology, vol. 58, no. 6, pp. 893–898, 2001.
[24]
A. Bicchi, E. P. Scilingo, and D. D. Rossi, “Haptic discrimination of softness in teleoperation: The role of the contact area spread rate,”IEEE Trans. Robot. Automat., vol. 16, no. 5, pp. 496–504, Oct.2000.
[25]
I. Nisky, F. A. Mussa-Ivaldi, and A. Karniel, “A regression and boundary-crossing-based model for the perception of delayed stiffness,”IEEE Trans. Haptics, vol. 1, no. 2, pp. 73–82, Jul.-Dec.2008.
[26]
A. Pressman, L. J. Welty, A. Karniel, and F. A. Mussa-Ivaldi, “Perception of delayed stiffness,”Int. J. Robot. Res., vol. 26, no. 11/12, pp. 1191–1203, Nov.2007.
[27]
Y. Kuroda, M. Nakao, T. Kuroda, H. Oyama, and M. Komori, “Interaction model between elastic objects for haptic feedback considering collisions of soft tissue,”Comput. Methods Programs Biomed., vol. 80, no. 3, pp. 216–224, 2005.
[28]
I. Nisky, F. Huang, A. Milstein, C. M. Pugh, F. A. Mussa-Ivaldi, and A. Karniel, “Perception of stiffness in laparoscopy-the fulcrum effect,”Stud. Health Technol. Informat., vol. 173, pp. 313–319, 2012.
[29]
A. G. Witney, A. Wing, J.-L. Thonnard, and A. M. Smith, “The cutaneous contribution to adaptive precision grip,”Trends Neurosciences, vol. 27, no. 10, pp. 637–643, 2004.
[30]
Z. F. Quek, S. B. Schorr, I. Nisky, A. M. Okamura, and W. R. Provancher, “Augmentation of stiffness perception with a 1-Degree-of-Freedom skin stretch device,”IEEE Trans. Human-Mach. Syst., vol. 44, no. 6, pp. 731–742, Dec.2014.
[31]
M. Farajian, R. Leib, H. Kossowsky, T. Zaidenberg, F. A. Mussa-Ivaldi, and I. Nisky, “Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force,”Elife, vol. 9, pp. 1–38, 2020.
[32]
D. Prattichizzo, C. Pacchierotti, and G. Rosati, “Cutaneous force feedback as a sensory subtraction technique in haptics,”IEEE Trans. Haptics, vol. 5, no. 4, pp. 289–300, Oct.-Dec.2012.
[33]
G. S. Giri, Y. Maddahi, and K. Zareinia, “An application-based review of haptics technology,”Robotics, vol. 10, no. 1, 2021, Art. no.
[34]
B. T. Gleeson, S. K. Horschel, and W. R. Provancher, “Communication of direction through lateral skin stretch at the fingertip,” in Proc. World Haptics 3rd Joint EuroHaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst., 2009, pp. 172–177.
[35]
W. R. Provancher and N. D. Sylvester, “Fingerpad skin stretch increases the perception of virtual friction,”IEEE Trans. Haptics, vol. 2, no. 4, pp. 212–223, Oct.-Dec.2009.
[36]
S. B. Schorr and A. M. Okamura, “Three-dimensional skin deformation as force substitution: Wearable device design and performance during haptic exploration of virtual environments,”IEEE Trans. Haptics, vol. 10, no. 3, pp. 418–430, Jul.-Sep.2017.
[37]
S. B. Schorr, Z. F. Quek, I. Nisky, W. R. Provancher, and A. M. Okamura, “Tactor-induced skin stretch as a sensory substitution method in teleoperated palpation,”IEEE Trans. Human-Mach. Syst., vol. 45, no. 6, pp. 714–726, Dec.2015.
[38]
C. Pacchierotti, A. Tirmizi, and D. Prattichizzo, “Improving transparency in teleoperation by means of cutaneous tactile force feedback,”ACM Trans. Appl. Percep., vol. 11, no. 1, pp. 1–16, 2014.
[39]
C. Pacchierotti, L. Meli, F. Chinello, M. Malvezzi, and D. Prattichizzo, “Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems,”Int. J. Robot. Res., vol. 34, no. 14, pp. 1773–1787, 2015.
[40]
I. El Rassi and J.-M. El Rassi, “A review of haptic feedback in tele-operated robotic surgery,”J. Med. Eng. Technol., vol. 44, no. 5, pp. 247–254, 2020.
[41]
Z. F. Quek, W. R. Provancher, and A. M. Okamura, “Evaluation of skin deformation tactile feedback for teleoperated surgical tasks,”IEEE Trans. Haptics, vol. 12, no. 2, pp. 102–113, Apr.-Jun.2018.
[42]
S. B. Schorr, Z. F. Quek, I. Nisky, W. R. Provancher, and A. M. Okamura, “Tactor-induced skin stretch as a sensory substitution method in teleoperated palpation,”IEEE Trans. Human-Mach. Syst., vol. 45, no. 6, pp. 714–726, Dec.2015.
[43]
K. Samuel, R. Oboe, and S. Oh, “Novel force observer for precise force estimation using force sensor,” in Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc., 2020, pp. 650–655.
[44]
N. Gurari, A. M. Okamura, and K. J. Kuchenbecker, “Perception of force and stiffness in the presence of low-frequency haptic noise,”PLoS One, vol. 12, no. 6, Jun.2017, Art. no. e0178605.
[45]
R. Leib, A. Karniel, and I. Nisky, “The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields,”J. Neuriophysiol., vol. 113, no. 9, pp. 3076–3089, May.2015.
[46]
M. S. Banks and M. O. Ernst, “Humans integrate visual and haptic information in a statistically optimal fashion,”Nature, vol. 415, no. 6870, pp. 429–433, Jan.2002.
[47]
H. B. Helbig and M. O. Ernst, “Optimal integration of shape information from vision and touch,”Exp. Brain Res., vol. 179, no. 4, pp. 595–606, 2007.
[48]
D. H. Arnold, M. Tear, R. Schindel, and W. Roseboom, “Audio-visual speech cue combination,”PLoS One, vol. 5, no. 4, 2010, Art. no. e10217.
[49]
J. Reuschel, K. Drewing, D. Y. Henriques, F. Rösler, and K. Fiehler, “Optimal integration of visual and proprioceptive movement information for the perception of trajectory geometry,”Exp. Brain Res., vol. 201, no. 4, pp. 853–862, 2010.
[50]
M. J. Young, M. S. Landy, and L. T. Maloney, “A perturbation analysis of depth perception from combinations of texture and motion cues,”Vis. Res., vol. 33, no. 18, pp. 2685–2696, 1993.
[51]
D. Meijer, S. Veselič, C. Calafiore, and U. Noppeney, “Integration of audiovisual spatial signals is not consistent with maximum likelihood estimation,”Cortex, vol. 119, pp. 74–88, Oct.2019.
[52]
K. Drewing, A. Ramisch, and F. Bayer, “Haptic, visual and visuo-haptic softness judgments for objects with deformable surfaces,” in Proc. World Haptics 3rd Joint EuroHaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst., 2009, pp. 640–645.
[53]
A. Metzger, A. Lezkan, and K. Drewing, “Integration of serial sensory information in haptic perception of softness,”J. Exp. psychol. Hum. Percep. Perform., vol. 44, no. 4, pp. 551–565, Apr.2018.
[54]
F. E. Van Beek, R. J. King, C. Brown, M. Di Luca, and S. Keller, “Static weight perception through skin stretch and kinesthetic information: Detection thresholds, JNDs, and PSEs,”IEEE Trans. Haptics, vol. 14, no. 1, pp. 20–31, Jan.-Mar.2021.
[55]
R. Miall and J. Jackson, “Adaptation to visual feedback delays in manual tracking: evidence against the smith predictor model of human visually guided action,”Exp. Brain Res., vol. 172, no. 1, pp. 77–84, Jun.2006.
[56]
H. Kossowsky, M. Farajian, A. Milstein, and I. Nisky, “The effect of variability in stiffness on perception and grip force adjustment,”IEEE Trans. Haptics, vol. 14, no. 3, pp. 513–525, Jul.-Sep.2021.
[57]
E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, and S. Mack, Principles of Neural Science. McGraw-hillNew York, 2000, vol. 4.
[58]
L. A. Jones and H. Z. Tan, “Application of psychophysical techniques to haptic research,”IEEE Trans. Haptics, vol. 6, no. 3, pp. 268–284, Jul.-Sep.2013.
[59]
F. Wichmann and N. Hill, “The psychometric function: I fitting, sampling, and goodness of fit,”Percep. Psychophys., vol. 63, no. 8, pp. 1293–1313, Nov.2001.
[60]
H. Z. Tan, et al., “Manual resolution of length, force, and compliance,”Adv. Robot., vol. 42, pp. 13–18, 1992.
[61]
A. Lecuyer, S. Coquillart, A. Kheddar, P. Richard, and P. Coiffet, “Pseudo-haptic feedback: Can isometric input devices simulate force feedback?,” in Proc. IEEE Virtual Reality, 2000, pp. 83–90.
[62]
N. Gurari, K. J. Kuchenbecker, and A. M. Okamura, “Stiffness discrimination with visual and proprioceptive cues,” in Proc. World Haptics 3rd Joint EuroHaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst., 2009, pp. 121–126.
[63]
L. A. Jones and I. W. Hunter, “A perceptual analysis of stiffness,”Exp. Brain Res., vol. 79, no. 1, pp. 150–156, 1990.
[64]
M. Farajian, R. Leib, H. Kossowsky, and I. Nisky, “Visual feedback weakens the augmentation of perceived stiffness by artificial skin stretch,”IEEE Trans. Haptics, vol. 14, no. 3, pp. 686–691, Jul.-Sep.2021.
[65]
Z. F. Quek, S. B. Schorr, I. Nisky, W. R. Provancher, and A. M. Okamura, “Sensory substitution of force and torque using 6-dof tangential and normal skin deformation feedback,” in Proc. IEEE Int. Conf. Robot. Automat., 2015, pp. 264–271.
[66]
V. Gritsenko, N. I. Krouchev, and J. F. Kalaska, “Afferent input, efference copy, signal noise, and biases in perception of joint angle during active versus passive elbow movements,”J. Neuriophysiol., vol. 98, no. 3, pp. 1140–1154, 2007.
[67]
F. Danion and C. Galléa, “The relation between force magnitude, force steadiness, and muscle co-contraction in the thumb during precision grip,”Neurosci. Lett., vol. 368, no. 2, pp. 176–180, 2004.
[68]
Y. Shao, V. Hayward, and Y. Visell, “Spatial patterns of cutaneous vibration during whole-hand haptic interactions,”Proc. Nat. Acad. Sci. USA, vol. 113, no. 15, pp. 4188–4193, 2016.
[69]
J. Roll and J. Vedel, “Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography,”Exp. Brain Res., vol. 47, no. 2, pp. 177–190, 1982.
[70]
S. Toma, D. Shibata, F. Chinello, D. Prattichizzo, and M. Santello, “Linear integration of tactile and non-tactile inputs mediates estimation of fingertip relative position,”Front. Neurosci., vol. 13, no. 68, 2019.

Cited By

View all
  • (2024)Two-finger Stiffness Discrimination with the Stochastic Resonance EffectACM Transactions on Applied Perception10.1145/363025421:2(1-17)Online publication date: 10-Jan-2024

Index Terms

  1. The Effect of Kinesthetic and Artificial Tactile Noise and Variability on Stiffness Perception
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image IEEE Transactions on Haptics
        IEEE Transactions on Haptics  Volume 15, Issue 2
        April-June 2022
        232 pages

        Publisher

        IEEE Computer Society Press

        Washington, DC, United States

        Publication History

        Published: 01 April 2022

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 12 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Two-finger Stiffness Discrimination with the Stochastic Resonance EffectACM Transactions on Applied Perception10.1145/363025421:2(1-17)Online publication date: 10-Jan-2024

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media