Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision

Published: 01 January 2017 Publication History

Abstract

Harrow, Hassidim, and Lloyd [Phys. Rev. Lett., 103 (2009), 150502] showed that for a suitably specified $N \times N$ matrix $A$ and an $N$-dimensional vector $\vec{b}$, there is a quantum algorithm that outputs a quantum state proportional to the solution of the linear system of equations $A\vec{x} = \vec{b}$. If $A$ is sparse and well-conditioned, their algorithm runs in time ${poly}(\log N, 1/\epsilon)$, where $\epsilon$ is the desired precision in the output state. We improve this to an algorithm whose running time is polynomial in $\log(1/\epsilon)$, exponentially improving the dependence on precision while keeping essentially the same dependence on other parameters. Our algorithm is based on a general technique for implementing any operator with a suitable Fourier or Chebyshev series representation. This allows us to bypass the quantum phase estimation algorithm, whose dependence on $\epsilon$ is prohibitive.

References

[1]
S. Aaronson, Read the fine print, Nat. Phys., 11 (2015), pp. 291--293.
[2]
A. Ambainis, Variable time amplitude amplification and quantum algorithms for linear algebra problems, in Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science, 2012, pp. 636--647.
[3]
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1964.
[4]
D. W. Berry and A. M. Childs, Black-box Hamiltonian simulation and unitary implementation, Quantum Inf. Comput., 12 (2012), pp. 29--62.
[5]
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Exponential improvement in precision for simulating sparse Hamiltonians, in Proceedings of the 46th ACM Symposium on Theory of Computing, 2014, pp. 283--292.
[6]
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett., 114 (2015), 090502.
[7]
D. W. Berry, A. M. Childs, and R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in Proceedings of the 56th Symposium on Foundations of Computer Science, 2015.
[8]
G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplification and estimation, in Quantum Computation and Information, Contemp. Math. 305, AMS, Providence, RI, 2002, pp. 53--74.
[9]
R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 339--354.
[10]
E. W. Cheney, Introduction to Approximation Theory, AMS Chelsea Publishing, Providence, RI, 1982.
[11]
A. M. Childs, Quantum algorithms: Equation solving by simulation, Nat. Phys., 5 (2009), 861.
[12]
A. M. Childs, On the relationship between continuous- and discrete-time quantum walk, Comm. Math. Phys., 294 (2010), pp. 581--603.
[13]
A. N. Chowdhury and R. D. Somma, Quantum algorithms for Gibbs sampling and hitting-time estimation, Quantum Inf. Comput., 17 (2017), pp. 41--64.
[14]
A. M. Childs and N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, Quantum Inf. Comput., 12 (2012), pp. 901--924.
[15]
B. Fefferman and C. Lin, Quantum Merlin Arthur with Exponentially Small Gap, preprint, https://arxiv.org/abs/1601.01975, 2016.
[16]
L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th ACM Symposium on Theory of Computing, 1996, pp. 212--219.
[17]
A. W. Harrow, Review of Quantum Algorithms for Systems of Linear Equations, preprint, https://arxiv.org/abs/1501.00008, 2015.
[18]
A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103 (2009), 150502.
[19]
J. K. Hunter and B. Nachtergale, Applied Analysis, World Scientific, River Edge, NJ, 2001.
[20]
R. Kothari, Efficient Algorithms in Quantum Query Complexity, Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada, 2014.
[21]
A. Montanaro and S. Pallister, Quantum Algorithms and the Finite Element Method, preprint, https://arxiv.org/abs/1512.05903, 2015.
[22]
V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis of quantum-logic circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 25 (2006), pp. 1000--1010.
[23]
R. D. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Simulating physical phenomena by quantum networks, Phys. Rev. A, 65 (2002), 042323.
[24]
S. Sachdeva and N. K. Vishnoi, Faster algorithms via approximation theory, Found. Trends Theor. Comput. Sci., 9 (2013), pp. 125--210.

Cited By

View all
  • (2025)Improvements to Quantum Interior Point Method for Linear OptimizationACM Transactions on Quantum Computing10.1145/37022446:1(1-24)Online publication date: 14-Jan-2025
  • (2024)Fast Quantum Subroutines for the Simplex MethodOperations Research10.1287/opre.2022.234172:2(763-780)Online publication date: 1-Mar-2024
  • (2024)An Optimal Linear-combination-of-unitaries-based Quantum Linear System SolverACM Transactions on Quantum Computing10.1145/36493205:2(1-23)Online publication date: 24-Feb-2024
  • Show More Cited By

Index Terms

  1. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image SIAM Journal on Computing
        SIAM Journal on Computing  Volume 46, Issue 6
        DOI:10.1137/smjcat.46.6
        Issue’s Table of Contents

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 2017

        Author Tags

        1. quantum algorithms
        2. quantum complexity
        3. linear systems

        Author Tags

        1. 68Q12
        2. 65F05

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 07 Mar 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)Improvements to Quantum Interior Point Method for Linear OptimizationACM Transactions on Quantum Computing10.1145/37022446:1(1-24)Online publication date: 14-Jan-2025
        • (2024)Fast Quantum Subroutines for the Simplex MethodOperations Research10.1287/opre.2022.234172:2(763-780)Online publication date: 1-Mar-2024
        • (2024)An Optimal Linear-combination-of-unitaries-based Quantum Linear System SolverACM Transactions on Quantum Computing10.1145/36493205:2(1-23)Online publication date: 24-Feb-2024
        • (2024)Quantum Time-Space Tradeoffs for Matrix ProblemsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649700(596-607)Online publication date: 10-Jun-2024
        • (2024)New Quantum Algorithms for Computing Quantum Entropies and DistancesIEEE Transactions on Information Theory10.1109/TIT.2024.339901470:8(5653-5680)Online publication date: 1-Aug-2024
        • (2024)A Quantum Algorithm Framework for Discrete Probability Distributions With Applications to Rényi Entropy EstimationIEEE Transactions on Information Theory10.1109/TIT.2024.338203770:5(3399-3426)Online publication date: 26-Mar-2024
        • (2024)Highly optimized quantum circuits synthesized via data-flow enginesJournal of Computational Physics10.1016/j.jcp.2024.112756500:COnline publication date: 1-Mar-2024
        • (2024)Quantum simulation of dissipation for Maxwell equations in dispersive mediaFuture Generation Computer Systems10.1016/j.future.2024.05.028159:C(221-229)Online publication date: 1-Oct-2024
        • (2024)Quantum-centric supercomputing for materials scienceFuture Generation Computer Systems10.1016/j.future.2024.04.060160:C(666-710)Online publication date: 1-Nov-2024
        • (2024)A New Hybrid Algorithm for Multivariate Polynomial System SolvingSN Computer Science10.1007/s42979-024-02645-35:4Online publication date: 27-Mar-2024
        • Show More Cited By

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media