Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A procedural object distribution function

Published: 01 October 2005 Publication History

Abstract

In this article, we present a procedural object distribution function, a new texture basis function that distributes procedurally generated objects over a procedurally generated texture. The objects are distributed uniformly over the texture, and are guaranteed not to overlap. The scale, size, and orientation of the objects can be easily manipulated. The texture basis function is efficient to evaluate, and is suited for real-time applications. The new texturing primitive we present extends the range of textures that can be generated procedurally.The procedural object distribution function we propose is based on Poisson disk tiles and a direct stochastic tiling algorithm for Wang tiles. Poisson disk tiles are square tiles filled with a precomputed set of Poisson disk distributed points, inspired by Wang tiles. A single set of Poisson disk tiles enables the real-time generation of an infinite amount of Poisson disk distributions of arbitrary size. With the direct stochastic tiling algorithm, these Poisson disk distributions can be evaluated locally, at any position in the Euclidean plane.Poisson disk tiles and the direct stochastic tiling algorithm have many other applications in computer graphics. We briefly explore applications in object distribution, primitive distribution for illustration, and environment map sampling.

References

[1]
Agarwal, S., Ramamoorthi, R., Belongie, S., and Jensen, H. W. 2003. Structured importance sampling of environment maps. ACM Trans. Graph. 22, 3, 605--612.
[2]
Berger, R. 1966. The undecidability of the domino problem. Mem. Amer. Math. Soc. 66, 1--72.
[3]
Cohen, J. and Debevec, P. 2001. LightGen, HDRShop plugin. Available online at http://www.ict.usc.edu/~jcohen/lightgen/lightgen.html.
[4]
Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. Graph. 287--294.
[5]
Cook, R. L. 1986. Stochastic sampling in computer graphics. Comput. Graph. (Proceedings of ACM SIGGRAPH'86) 5, 1, 51--72.
[6]
Culik, II, K. 1996. An aperiodic set of 13 Wang tiles. Disc. Math. 160, 1--3, 245--251.
[7]
Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of ACM SIGGRAPH'98, 275--286.
[8]
Dippé, M. A. Z. and Wold, E. H. 1985. Antialiasing through stochastic sampling. Comput. Graph. (Proceedings of ACM SIGGRAPH'85) 19, 3, 69--78.
[9]
Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. 2002. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann, San Francisco, CA.
[10]
Gielis, J., Beirinckx, B., and Bastiaens, E. 2003. Superquadrics with rational and irrational symmetry. In Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, 262--265.
[11]
Glassner, A. 1999. Andrew Glassner's Notebook: Recreational Computer Graphics. Morgan Kaufmann, San Fracisco, CA.
[12]
Grünbaum, B. and Shepard, G. C. 1986. Tilings and Patterns. W. H. Freeman & Company, New York, NY.
[13]
Hiller, S., Deussen, O., and Keller, A. 2001. Tiled blue noise samples. In Proceedings of Vision Modeling Visualization 2001. 265--272.
[14]
Kaplan, C. S. and Salesin, D. H. 2000. Escherization. In Proceedings of ACM SIGGRAPH 2000. 499--510.
[15]
Kari, J. 1996. A small aperiodic set of Wang tiles. Discr. Math. 160, 1--3, 259--264.
[16]
Klassen, R. V. 2000. Filtered jitter. Comput. Graph. Forum 19, 4, 223--230.
[17]
Kollig, T. and Keller, A. 2003. Efficient illumination by high dynamic range images. EGRW'03: Proceedings of the 14th Eurographics Workshop on Rendering. 45--50.
[18]
Lagae, A. and Dutré, P. 2005. Template Poisson disk tiles. Tech. rep. CW413. Katholieke Universiteit Leuven, Departement Computerwetenschappen, Heverlee, Belgium.
[19]
Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theor. 28, 2, 129--137.
[20]
McCool, M. and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proceedings of Graphics Interface'92. 94--105.
[21]
Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. Comput. Graph. (Proceedings of ACM SIGGRAPH'87) 21, 4, 65--72.
[22]
Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. Comput. Graph. (Proceedings of ACM SIGGRAPH'91) 25, 4, 157--164.
[23]
Neyret, F. and Cani, M.-P. 1999. Pattern-based texturing revisited. In Proceedings of ACM SIGGRAPH 1999. 235--242.
[24]
Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495.
[25]
Peachy, D. R. 1985. Solid texturing of complex surfaces. Comput. Graph. (Proceedings of ACM SIGGRAPH'85) 19, 3, 279--286.
[26]
Penrose, R. 1974. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Applications 10, 266--271.
[27]
Perlin, K. 1985. An image synthesizer. Comput. Graph. (Proceedings of ACM SIGGRAPH'85) 19, 3, 287--296.
[28]
Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 681--682.
[29]
Perlin, K. and Hoffert, E. M. 1989. Hypertexture. Comput. Graph. (Proceedings of ACM SIGGRAPH'89) 23, 3, 253--262.
[30]
Secord, A., Heidrich, W., and Streit, L. 2002. Fast primitive distribution for illustration. EGRW '02: Proceedings of the 13th Eurographics Workshop on Rendering. 215--226.
[31]
Shade, J., Cohen, M. F., and Mitchell, D. P. 2002. Tiling layered depth images. Tech. rep., University of Washington, Department of Computer Science and Engineering, Seattle, WA.
[32]
Stam, J. 1997. Aperiodic texture mapping. Tech. rep. ERCIM-01/97-R046. European Research Consortium for Informatics and Mathematics, Sophia Antipolos, France.
[33]
Turk, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. Comput. Graph. (Proceedings of ACM SIGGRAPH'91) 25, 4, 289--298.
[34]
Ulichney, R. 1987. Digital Halftoning. MIT Press, Cambridge, MA.
[35]
Wang, H. 1961. Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1--42.
[36]
Wang, H. 1965. Games, logic and computers. Scient. Amer. 213, 5, 98--106.
[37]
Wei, L.-Y. 2004. Tile-based texture mapping on graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, 55--63.
[38]
Worley, S. 1996. A cellular texture basis function. In Proceedings of ACM SIGGRAPH 1996. 291--294.
[39]
Yellot, J. I. 1982. Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing. Vis. Res. 22, 1205--1210.
[40]
Yellot, J. I. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382--385.

Cited By

View all

Index Terms

  1. A procedural object distribution function

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 24, Issue 4
      October 2005
      244 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1095878
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 October 2005
      Published in TOG Volume 24, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Nonperiodic tiling
      2. Poisson disk distribution
      3. Poisson disk tiles
      4. Wang tiles
      5. object distribution
      6. procedural modeling
      7. procedural texture
      8. sampling
      9. stochastic tiling
      10. texture basis function

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)18
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 03 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)StyleTerrainComputers and Graphics10.1016/j.cag.2023.09.002116:C(373-382)Online publication date: 4-Mar-2024
      • (2024)Poisson-Disk Sampling: Theory and ApplicationsEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_398(1424-1431)Online publication date: 5-Jan-2024
      • (2023)Curl Noise JitteringSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618163(1-11)Online publication date: 10-Dec-2023
      • (2023)Bounded Wang tilings with integer programming and graph-based heuristicsScientific Reports10.1038/s41598-023-31786-313:1Online publication date: 24-Mar-2023
      • (2022)Constant-Cost Spatio-Angular Prefiltering of Glinty Appearance Using Tensor DecompositionACM Transactions on Graphics10.1145/350791541:2(1-17)Online publication date: 22-Jan-2022
      • (2021)Dyeing creation: a textile pattern discovery and fabric image generation methodMultimedia Tools and Applications10.1007/s11042-021-10902-3Online publication date: 4-May-2021
      • (2021)Poisson-Disk Sampling: Theory and ApplicationsEncyclopedia of Computer Graphics and Games10.1007/978-3-319-08234-9_398-1(1-8)Online publication date: 27-May-2021
      • (2019)Visibility‐Aware Progressive Farthest Point Sampling on the GPUComputer Graphics Forum10.1111/cgf.1384838:7(413-424)Online publication date: 14-Nov-2019
      • (2019)Point Pattern Synthesis via Irregular ConvolutionComputer Graphics Forum10.1111/cgf.1379338:5(109-122)Online publication date: 12-Aug-2019
      • (2019)Generating Stochastic Wall Patterns On‐the‐fly with Wang TilesComputer Graphics Forum10.1111/cgf.1363538:2(255-264)Online publication date: 7-Jun-2019
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media