Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Underwater rigid body dynamics

Published: 01 July 2012 Publication History

Abstract

We show that the motion of rigid bodies under water can be realistically simulated by replacing the usual inertia tensor and scalar mass by the so-called Kirchhoff tensor. This allows us to model fluid-body interaction without simulating the surrounding fluid at all. We explain some of the phenomena that arise and compare our results against real experiments. It turns out that many real scenarios (sinking bodies, balloons) can be matched using a single, hand-tuned scaling parameter. We describe how to integrate our method into an existing physics engine, which makes underwater rigid body dynamics run in real time.

Supplementary Material

JPG File (tp217_12.jpg)
ZIP File (a104-weissman.zip)
Supplemental material.
MP4 File (tp217_12.mp4)

References

[1]
Anderson Jr, J. D. 2005. Ludwig Prandtl's Boundary Layer. Physics Today, December.
[2]
Baraff, D. 1993. Non-penetrating rigid body simulation. In State of the Art Reports, Eurographics.
[3]
Becker, M., Tessendorf, H., and Teschner, M. 2008. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans. Vis. Comput. Graphics 15, 3.
[4]
Bou-Rabee, N. 2007. Hamilton-Pontryagin Integrators on Lie Groups. PhD thesis, Caltech.
[5]
Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid. ACM Trans. Graph. 23, 3.
[6]
Field, S., Klaus, M., and Moore, M. 1997. Chaotic dynamics of falling disks. Nature 388, July.
[7]
Holmes, P., Jenkins, J., and Leonard, N. E. 1998. Dynamics of the Kirchhoff Equations I: Coincident Centers of Gravity and Buoyancy. Physica D 118.
[8]
Kallay, M. 2006. Computing the moment of inertia of a solid defined by a triangle mesh. journal of graphics, gpu, and game tools 11, 2.
[9]
Kanso, E., Marsden, J. E., Rowley, C. W., Melli-huber, J. B., and Newton, C. P. K. 2005. Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Science 15, 255--289.
[10]
Kirchhoff, G. R. 1870. {On the motion of a solid of revolution in a fluid}. Journal für die Reine und Angewandte Mathematik 71. (in German).
[11]
Kobilarov, M., Crane, K., and Desbrun, M. 2009. Lie group integrators for animation and control of vehicles. ACM Trans. Graph. 28, 2.
[12]
Lamb, H. 1895. Hydrodynamics. Cambridge Univ Pr.
[13]
Lee, T., Leok, M., and Mcclamroch, N. H. 2009. Dynamics of connected rigid bodies in a perfect fluid. In Proc. ACC 2009, {Online}. Available: http://arxiv.org/abs/0809.1488.
[14]
Nair, S., and Kanso, E. 2007. Hydrodynamically coupled rigid bodies. Journal of Fluid Mechanics 592, 393--411.
[15]
Newman, J. N. 1977. Marine hydrodynamics. MIT Press.
[16]
Nordkvist, N., and Sanyal, A. K. 2010. A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics. In Proc. IEEE CDC.
[17]
Ozgen, O., Kallmann, M., Ramirez, L. E., and Coimbra, C. F. 2010. Underwater cloth simulation with fractional derivatives. ACM Trans. Graph. 29, 3.
[18]
Pesavento, U., and Wang, Z. J. 2004. Falling paper: Navier-stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett. 93, 14, 144501.
[19]
Saffman, P. G. 1992. Vortex Dynamics. Cambridge Univ Pr.
[20]
Shashikanth, B. N., Sheshmani, A., David, S., and Jerrold, K. 2008. Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: the case of arbitrary smooth body shape. 37--64.
[21]
Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. Proc. ACM/SIGGRAPH Conf. 25, 3, 826--834.
[22]
Van Oosterom, a., and Strackee, J. 1983. The Solid Angle of a Plane Triangle. IEEE Trans. Biomed. Eng. BME-30, 2.
[23]
Vankerschaver, J., Kanso, E., and Marsden, J. 2009. The geometry and dynamics of interacting rigid bodies and point vortices. The Journal of Geometric Mechanics 1, 2, 223--266.
[24]
Weissmann, S., Gunn, C., Brinkmann, P., Hoffmann, T., and Pinkall, U. 2009. jReality: a java library for real-time interactive 3D graphics and audio. In Proc. ACM/MM Conf.
[25]
Zhong, H., Chen, S., and Lee, C. 2011. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids 23, 1.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 31, Issue 4
July 2012
935 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2185520
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2012
Published in TOG Volume 31, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Kirchhoff tensor
  2. added-mass tensor
  3. rigid body dynamics
  4. underwater

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)58
  • Downloads (Last 6 weeks)29
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Going with the FlowACM Transactions on Graphics10.1145/365816443:4(1-12)Online publication date: 19-Jul-2024
  • (2023)Motion from Shape ChangeACM Transactions on Graphics10.1145/359241742:4(1-11)Online publication date: 26-Jul-2023
  • (2023)Fluid CohomologyACM Transactions on Graphics10.1145/359240242:4(1-25)Online publication date: 26-Jul-2023
  • (2023)On the influence of head motion on the swimming kinematics of robotic fishBioinspiration & Biomimetics10.1088/1748-3190/aceedb18:5(056007)Online publication date: 29-Aug-2023
  • (2022)Simu2VITA: A General Purpose Underwater Vehicle SimulatorSensors10.3390/s2209325522:9(3255)Online publication date: 24-Apr-2022
  • (2022)Hidden Degrees of Freedom in Implicit Vortex FilamentsACM Transactions on Graphics10.1145/3550454.355545941:6(1-14)Online publication date: 30-Nov-2022
  • (2020)Realistic Buoyancy Model for Real‐Time ApplicationsComputer Graphics Forum10.1111/cgf.1401339:6(217-231)Online publication date: 19-May-2020
  • (2020)Design and Experiments with LoCO AUV: A Low Cost Open-Source Autonomous Underwater Vehicle2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS45743.2020.9341007(1761-1768)Online publication date: 24-Oct-2020
  • (2018)Precomputed Panel Solver for Aerodynamics SimulationACM Transactions on Graphics10.1145/318576737:2(1-12)Online publication date: 23-Mar-2018
  • (2017)Adaptive tracking of position and attitude of a underwater rigid-body2017 Indian Control Conference (ICC)10.1109/INDIANCC.2017.7846513(432-436)Online publication date: Jan-2017
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media