Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Earth mover's distances on discrete surfaces

Published: 27 July 2014 Publication History

Abstract

We introduce a novel method for computing the earth mover's distance (EMD) between probability distributions on a discrete surface. Rather than using a large linear program with a quadratic number of variables, we apply the theory of optimal transportation and pass to a dual differential formulation with linear scaling. After discretization using finite elements (FEM) and development of an accompanying optimization method, we apply our new EMD to problems in graphics and geometry processing. In particular, we uncover a class of smooth distances on a surface transitioning from a purely spectral distance to the geodesic distance between points; these distances also can be extended to the volume inside and outside the surface. A number of additional applications of our machinery to geometry problems in graphics are presented.

Supplementary Material

ZIP File (a67-solomon.zip)
Supplemental material.
MP4 File (a67-sidebyside.mp4)

References

[1]
Agueh, M., and Carlier, G. 2011. Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 2, 904--924.
[2]
Arnold, V. 2003. Lectures on Partial Differential Equations. Universitext. Springer.
[3]
Beckmann, M. 1952. A continuous model of transportation. Econometrica, 643--660.
[4]
Benamou, J.-D., and Brenier, Y. 2000. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84, 3, 375--393.
[5]
Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using Lagrangian mass transport. TOG 30, 6 (Dec.), 158:1--158:12.
[6]
Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. 2013. Sliced and Radon Wasserstein barycenters of measures. Tech. rep., Preprint Hal-00881872.
[7]
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Jan.), 1--122.
[8]
Campen, M., Heistermann, M., and Kobbelt, L. 2013. Practical anisotropic geodesy. Proc. SGP 32, 5, 63--71.
[9]
Canny, J., and Reif, J. 1987. New lower bound techniques for robot motion planning problems. In Found. Comp. Sci., no. 28, 49--60.
[10]
Chazal, F., Cohen-Steiner, D., and Mérigot, Q. 2010. Geometric inference for measures based on distance functions. Tech. Rep. 6930, INRIA, June.
[11]
Chazal, F., Cohen-Steiner, D., and Mérigot, Q. 2011. Geometric inference for probability measures. Found. Comp. Math. 11, 6, 733--751.
[12]
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. W. 2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102, 21, 7426--7431.
[13]
Connolly, C., Burns, J. B., and Weiss, R. 1990. Path planning using Laplace's equation. In Proc. Conf. on Robotics and Automation, vol. 3, 2102--2106.
[14]
Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. TOG 32, 5 (Oct.), 152:1--152:11.
[15]
de Goes, F., Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. CGF 30, 5, 1593--1602.
[16]
de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. TOG 31, 6 (Nov.), 171:1--171:11.
[17]
Deza, M. M., and Laurent, M. 2009. Geometry of Cuts and Metrics. Springer.
[18]
Dominitz, A., and Tannenbaum, A. 2010. Texture mapping via optimal mass transport. TVCG 16, 3, 419--433.
[19]
Feldman, M., and McCann, R. 2002. Monge's transport problem on a Riemannian manifold. Trans. AMS 354, 4, 1667--1697.
[20]
Folland, G. B. 1999. Real analysis: modern techniques and their applications, vol. 361. Wiley New York.
[21]
Fouss, F., Pirotte, A., Renders, J.-M., and Saerens, M. 2007. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. Trans. Knowledge and Data Eng. 19, 3, 355--369.
[22]
Gu, X., Luo, F., Sun, J., and Yau, S.-T., 2013. Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Ampère equations.
[23]
He, B., Yang, H., and Wang, S. 2000. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory and App. 106, 2, 337--356.
[24]
Jiang, X., Lim, L.-H., Yao, Y., and Ye, Y. 2011. Statistical ranking and combinatorial Hodge theory. Mathematical Programming 127, 1, 203--244.
[25]
Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. TOG 24, 3 (July), 561--566.
[26]
Kimmel, R., and Sethian, J. A. 1998. Computing geodesic paths on manifolds. In PNAS, 8431--8435.
[27]
Lai, R., Liang, J., and Zhao, H.-K. 2013. A local mesh method for solving PDEs on point clouds. Inverse Prob. and Imaging 7, 3, 737--755.
[28]
Li, Y. 1998. A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclidean distances. Comp. Optim. and App. 10, 3, 219--242.
[29]
Lia, G., Guoa, L., Niea, J., and Liu, T. 2010. An automated pipeline for cortical sulcal fundi extraction. Medical Image Analysis 14, 3, 343--359.
[30]
Liang, J., and Zhao, H. 2013. Solving partial differential equations on point clouds. J. Sci. Comp. 35, 3, A1461--A1486.
[31]
Lipman, Y., and Daubechies, I. 2011. Conformal Wasserstein distances: Comparing surfaces in polynomial time. Advances in Mathematics 227, 3, 1047--1077.
[32]
Lipman, Y., Rustamov, R., and Funkhouser, T. 2010. Biharmonic distance. TOG 29, 3 (June).
[33]
Lipman, Y., Puente, J., and Daubechies, I. 2013. Conformal Wasserstein distance: II. Computational aspects and extensions. Math. Comp. 82, 331--381.
[34]
Mémoli, F. 2011. Gromov--Wasserstein distances and the metric approach to object matching. Found. Comp. Math. 11, 4, 417--487.
[35]
Mérigot, Q. 2011. A multiscale approach to optimal transport. CGF 30, 5, 1583--1592.
[36]
Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4 (Aug.), 647--668.
[37]
Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. TOG 30, 4 (July), 103:1--103:12.
[38]
Pan, S., and Jiang, Y. 2008. Smoothing Newton method for minimizing the sum of p-norms. J. Optim. Theory and App. 137, 2, 255--275.
[39]
Panozzo, D., Baran, I., Diamanti, O., and Sorkine-Hornung, O. 2013. Weighted averages on surfaces. TOG 32, 4 (July), 60:1--60:12.
[40]
Pele, O., and Werman, M. 2009. Fast and robust earth mover's distances. In Proc. ICCV, 460--467.
[41]
Plastria, F. 2011. The Weiszfeld algorithm: Proof, amendments, and extensions. In Found. of Location Anal., H. A. Eiselt and V. Marianov, Eds., vol. 155 of Operations Research & Management Science. 357--389.
[42]
Polthier, K., and Preuss, E. 2003. Identifying vector field singularities using a discrete Hodge decomposition. In Vis. and Math. III, H.-C. Hege and K. Polthier, Eds. Springer, 113--134.
[43]
Qi, L., Sun, D., and Zhou, G. 2002. A primal--dual algorithm for minimizing a sum of Euclidean norms. J. Comp. Applied Math. 138, 1, 127--150.
[44]
Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. IJCV 40, 2 (Nov.), 99--121.
[45]
Rustamov, R. M., Lipman, Y., and Funkhouser, T. 2009. Interior distance using barycentric coordinates. In Proc. SGP, 1279--1288.
[46]
Santambrogio, F. 2009. Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. PDE 36, 3, 343--354.
[47]
Santambrogio, F. 2013. Prescribed-divergence problems in optimal transportation. MSRI lecture notes, October 2013.
[48]
Sayas, F.-J., 2008. A gentle introduction to the finite element method.
[49]
Schwarz, G. 1995. Hodge decomposition: a method for solving boundary value problems. Lecture notes in mathematics. Springer.
[50]
Solomon, J., Nguyen, A., Butscher, A., Ben-Chen, M., and Guibas, L. 2012. Soft maps between surfaces. CGF 31, 5 (Aug.), 1617--1626.
[51]
Solomon, J., Guibas, L., and Butscher, A. 2013. Dirichlet energy for analysis of synthesis of soft maps. Proc. SGP 32, 5 (Aug.), 197--206.
[52]
Sun, J., Chen, X., and Funkhouser, T. A. 2010. Fuzzy geodesics and consistent sparse correspondences for deformable shapes. Proc. SGP 29, 5, 1535--1544.
[53]
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. TOG 24, 3 (July), 553--560.
[54]
Takano, Y., and Yamamoto, Y. 2010. Metric-preserving reduction of earth mover's distance. Asia Pac. J. Oper. Res. 27, 39.
[55]
Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. SGP, 201--210.
[56]
Villani, C. 2003. Topics in Optimal Transportation. AMS.
[57]
Weiszfeld, E. 1937. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tôhoku Math. J. 43, 355--386.
[58]
Zhou, G., Toh, K., and Sun, D. 2003. Globally and quadratically convergent algorithm for minimizing the sum of Euclidean norms. J. Optim. Theory and App. 119, 2, 357--377.

Cited By

View all
  • (2024)Non‐Euclidean Sliced Optimal Transport SamplingComputer Graphics Forum10.1111/cgf.1502043:2Online publication date: 30-Apr-2024
  • (2024)A volumetric approach to Monge's optimal transport on surfacesJournal of Computational Physics10.1016/j.jcp.2024.113352517(113352)Online publication date: Nov-2024
  • (2024)Three-dimensional reconstruction of cotton plant with internal canopy occluded structure recoveryComputers and Electronics in Agriculture10.1016/j.compag.2023.108370215:COnline publication date: 27-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Wasserstein metric
  2. earth mover's distance
  3. finite elements
  4. geometric median
  5. optimal transportation

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)131
  • Downloads (Last 6 weeks)14
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Non‐Euclidean Sliced Optimal Transport SamplingComputer Graphics Forum10.1111/cgf.1502043:2Online publication date: 30-Apr-2024
  • (2024)A volumetric approach to Monge's optimal transport on surfacesJournal of Computational Physics10.1016/j.jcp.2024.113352517(113352)Online publication date: Nov-2024
  • (2024)Three-dimensional reconstruction of cotton plant with internal canopy occluded structure recoveryComputers and Electronics in Agriculture10.1016/j.compag.2023.108370215:COnline publication date: 27-Feb-2024
  • (2024)Riemannian block SPD coupling manifold and its application to optimal transportMachine Language10.1007/s10994-022-06258-w113:4(1595-1622)Online publication date: 1-Apr-2024
  • (2023)Numerical solution of the $ L^1 $-optimal transport problem on surfacesAdvances in Computational Science and Engineering10.3934/acse.2023017(0-0)Online publication date: 2023
  • (2023)Learning the Geodesic Embedding with Graph Neural NetworksACM Transactions on Graphics10.1145/361831742:6(1-12)Online publication date: 5-Dec-2023
  • (2023)A Convex Optimization Framework for Regularized Geodesic DistancesACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591523(1-11)Online publication date: 23-Jul-2023
  • (2023)Discrete Optimal Transport with Independent Marginals is #P-HardSIAM Journal on Optimization10.1137/22M148204433:2(589-614)Online publication date: 1-Jun-2023
  • (2023)Topological packing statistics of living and nonliving matterScience Advances10.1126/sciadv.adg12619:36Online publication date: 8-Sep-2023
  • (2023)A survey of Optimal Transport for Computer Graphics and Computer VisionComputer Graphics Forum10.1111/cgf.1477842:2(439-460)Online publication date: 23-May-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media