Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Beyond points and beams: higher-dimensional photon samples for volumetric light transport

Published: 20 July 2017 Publication History

Abstract

We develop a theory of volumetric density estimation which generalizes prior photon point (0D) and beam (1D) approaches to a broader class of estimators using "nD" samples along photon and/or camera subpaths. Volumetric photon mapping performs density estimation by point sampling propagation distances within the medium and performing density estimation over the generated points (0D). Beam-based (1D) approaches consider the expected value of this distance sampling process along the last camera and/or light subpath segments. Our theory shows how to replace propagation distance sampling steps across multiple bounces to form higher-dimensional samples such as photon planes (2D), photon volumes (3D), their camera path equivalents, and beyond. We perform a theoretical error analysis which reveals that in scenarios where beams already outperform points, each additional dimension of nD samples compounds these benefits further. Moreover, each additional sample dimension reduces the required dimensionality of the blurring needed for density estimation, allowing us to formulate, for the first time, fully unbiased forms of volumetric photon mapping. We demonstrate practical implementations of several of the new estimators our theory predicts, including both biased and unbiased variants, and show that they outperform state-of-the-art beam-based volumetric photon mapping by a factor of 2.4--40×.

Supplementary Material

ZIP File (a112-bitterli.zip)
Supplemental files.
MP4 File (papers-0508.mp4)

References

[1]
James Arvo. 1993. Transfer Functions in Global Illumination. In ACM SIGGRAPH '93 Course Notes - Global Illumination.
[2]
James Arvo and David Kirk. 1990. Particle transport and image synthesis. In Proc. SIGGRAPH. ACM, New York, NY.
[3]
James Richard Arvo. 1995a. Analytic methods for simulated light transport. Ph.D. Dissertation. Yale University.
[4]
James R. Arvo. 1995b. Applications of Irradiance Tensors to the Simulation of Non-Lambertian Phenomena. In Proc. SIGGRAPH.
[5]
Rasmus Barringer, Carl Johan Gribel, and Tomas Akenine-Möller. 2012. High-quality Curve Rendering Using Line Sampled Visibility. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6 (Nov. 2012).
[6]
Niels Billen and Philip Dutré. 2016. Line Sampling for Direct Illumination. Computer Graphics Forum (Proc. EGSR) 35, 4 (June 2016).
[7]
Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover Publications.
[8]
Min Chen and James Arvo. 2001. Simulating Non-Lambertian Phenomena Involving Linearly-Varying Luminaires. In Rendering Techniques (Proc. EGWR).
[9]
Min Chen and James R. Arvo. 2000. A Closed-Form Solution for the Irradiance due to Linearly-Varying Luminaires. In Rendering Techniques (Proc. EGWR).
[10]
Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (2014).
[11]
Eugene D'Eon and Geoffrey Irving. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011).
[12]
Iliyan Georgiev, Jaroslav Křivànek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 5 (2012).
[13]
Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint Importance Sampling of Low-Order Volumetric Scattering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6 (Nov. 2013).
[14]
Paul Glasserman. 2003. Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Vol. 53. Springer New York, Chapter 4.
[15]
Carl Johan Gribel, Rasmus Barringer, and Tomas Akenine-Möller. 2011. High-Quality Spatio-Temporal Rendering using Semi-Analytical Visibility. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (Aug. 2011).
[16]
Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller. 2010. Analytical Motion Blur Rasterization with Compression. In Proceedings of HPG.
[17]
Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 28, 5 (2009).
[18]
Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive Photon Mapping. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5 (2008).
[19]
Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 5 (2012).
[20]
Vlastimil Havran, Jiri Bittner, Robert Herzog, and Hans-Peter Seidel. 2005. Ray Maps for Global Illumination. In Rendering Techniques (Proc. EGSR).
[21]
David Immel, Michael Cohen, and Donald Greenberg. 1986. A radiosity method for non-diffuse environments. Proc. SIGGRAPH 20, 4 (1986).
[22]
Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011a. A Comprehensive Theory of Volumetric Radiance Estimation Using Photon Points and Beams. ACM Trans. Graph. 30, 1 (Feb. 2011).
[23]
Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias Zwicker. 2011b. Progressive Photon Beams. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6 (Dec. 2011).
[24]
Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. 2008. The Beam Radiance Estimate for Volumetric Photon Mapping. Computer Graphics Forum (Proc. Eurographics) 27, 2 (April 2008).
[25]
Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA.
[26]
Henrik Wann Jensen and Per H. Christensen. 1998. Efficient Simulation of Light Transport in Scenes With Participating Media Using Photon Maps. In Proc. SIGGRAPH.
[27]
Thouis R. Jones and Ronald N. Perry. 2000. Antialiasing with Line Samples. In Rendering Techniques (Proc. EGWR). Springer-Verlag, London, UK.
[28]
James T. Kajiya. 1986. The Rendering Equation. Proc. SIGGRAPH 20, 4 (Aug. 1986).
[29]
Claude Knaus and Matthias Zwicker. 2011. Progressive Photon Mapping: A Probabilistic Approach. ACM Trans. Graph. 30, 3 (2011).
[30]
Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (July 2014).
[31]
Eric Lafortune and Yves Willems. 1993. Bi-directional path tracing. In Proc. Compugraphics.
[32]
Eric Lafortune and Yves Willems. 1996. Rendering participating media with bidirectional path tracing. Photorealistic Rendering Techniques (Proc. EGWR) (1996).
[33]
Iván Lux. 1978. Unified Definition of a Class of Monte Carlo Estimators. Nuclear Science and Engineering 67, 1 (July 1978).
[34]
Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a. Progressive Virtual Beam Lights. Computer Graphics Forum (Proc. EGSR) 31, 4 (2012).
[35]
Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b. Virtual Ray Lights for Rendering Scenes with Participating Media. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (July 2012).
[36]
Derek Nowrouzezahrai, Ilya Baran, Kenny Mitchell, and Wojciech Jarosz. 2014. Visibility Silhouettes for Semi-Analytic Spherical Integration. Computer Graphics Forum 33, 1 (Feb. 2014).
[37]
Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis Light Transport for Participating media. In Rendering Techniques (Proc. EGWR).
[38]
Vincent Pegoraro and Steven G. Parker. 2009. An Analytical Solution to Single Scattering in Homogeneous Participating Media. Computer Graphics Forum (Proc. Eurographics) 28, 2 (2009).
[39]
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory To Implementation (3rd ed.).
[40]
Peter Schröder and Pat Hanrahan. 1993. On the Form Factor Between Two Polygons. In Proc. SIGGRAPH. 163--164.
[41]
Jerome Spanier. 1966. Two Pairs of Families of Estimators for Transport Problems. SIAM J. Appl. Math. 14, 4 (1966).
[42]
Jerome Spanier and Ely Meyer Gelbard. 1969. Monte Carlo principles and neutron transport problems. Addison-Wesley.
[43]
Bo Sun, Ravi Ramamoorthi, Srinivasa G. Narasimhan, and Shree K. Nayar. 2005. A practical analytic single scattering model for real time rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005).
[44]
Xin Sun, Kun Zhou, Stephen Lin, and Baining Guo. 2010. Line space gathering for single scattering in large scenes. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4 (2010).
[45]
Stanley Tzeng, Anjul Patney, Andrew Davidson, Mohamed S. Ebeida, Scott A. Mitchell, and John D. Owens. 2012. High-quality Parallel Depth-of-field Using Line Samples. In Proceedings of HPG.
[46]
Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford, CA, USA.
[47]
Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques (Proc. EGWR).
[48]
Eric Veach and Leonidas Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. Proc. SIGGRAPH 29 (1995).
[49]
Eric Veach and Leonidas Guibas. 1997. Metropolis light transport. Proc. SIGGRAPH 31 (1997).

Cited By

View all
  • (2024)Efficiency Investigation of Langevin Monte Carlo Ray TracingMathematics10.3390/math1221343712:21(3437)Online publication date: 3-Nov-2024
  • (2024)Interactive calculation of light refraction and caustics using a graphics processorProgrammirovanie10.31857/S0132347424010086(100-112)Online publication date: 15-Feb-2024
  • (2024)Differentiable Photon Mapping using Generalized Path GradientsACM Transactions on Graphics10.1145/368795843:6(1-15)Online publication date: 19-Dec-2024
  • Show More Cited By

Index Terms

  1. Beyond points and beams: higher-dimensional photon samples for volumetric light transport

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 36, Issue 4
    August 2017
    2155 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3072959
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 July 2017
    Published in TOG Volume 36, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. global illumination
    2. light transport
    3. participating media
    4. photon beams
    5. photon mapping

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)100
    • Downloads (Last 6 weeks)28
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Efficiency Investigation of Langevin Monte Carlo Ray TracingMathematics10.3390/math1221343712:21(3437)Online publication date: 3-Nov-2024
    • (2024)Interactive calculation of light refraction and caustics using a graphics processorProgrammirovanie10.31857/S0132347424010086(100-112)Online publication date: 15-Feb-2024
    • (2024)Differentiable Photon Mapping using Generalized Path GradientsACM Transactions on Graphics10.1145/368795843:6(1-15)Online publication date: 19-Dec-2024
    • (2024)DARTS: Diffusion Approximated Residual Time Sampling for Time-of-flight Rendering in Homogeneous Scattering MediaACM Transactions on Graphics10.1145/368793043:6(1-14)Online publication date: 19-Dec-2024
    • (2024)Interactive Calculation of Light Refraction and Caustics Using a Graphics ProcessorProgramming and Computing Software10.1134/S036176882401012250:1(63-72)Online publication date: 1-Feb-2024
    • (2024)Photon Field Networks for Dynamic Real-Time Volumetric Global IlluminationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332710730:1(975-985)Online publication date: 1-Jan-2024
    • (2024)Unifying radiative transfer models in computer graphics and remote sensing, Part I: A surveyJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2023.108847314(108847)Online publication date: Feb-2024
    • (2024)Efficient participating media rendering with differentiable regularizationComputational Visual Media10.1007/s41095-023-0372-210:5(937-948)Online publication date: 7-Oct-2024
    • (2024)Adaptive sampling and reconstruction for gradient-domain renderingComputational Visual Media10.1007/s41095-023-0361-510:5(885-902)Online publication date: 10-Oct-2024
    • (2023)Decorrelating ReSTIR Samplers via MCMC MutationsACM Transactions on Graphics10.1145/362916643:1(1-15)Online publication date: 19-Oct-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media