Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3168826acmconferencesArticle/Chapter ViewAbstractPublication PagescgoConference Proceedingsconference-collections
research-article
Public Access

A compiler for cyber-physical digital microfluidic biochips

Published: 24 February 2018 Publication History
  • Get Citation Alerts
  • Abstract

    Programmable microfluidic laboratories-on-a-chip (LoCs) offer the benefits of automation and miniaturization to the life sciences. This paper presents an updated version of the BioCoder language and a fully static (offline) compiler that can target an emerging class of LoCs called Digital Microfluidic Biochips (DMFBs), which manipulate discrete droplets of liquid on a 2D electrode grid. The BioCoder language and runtime execution engine leverage advances in sensor integration to enable specification, compilation, and execution of assays (bio-chemical procedures) that feature online decision-making based on sensory data acquired during assay execution. The compiler features a novel hybrid intermediate representation (IR) that interleaves fluidic operations with computations performed on sensor data. The IR extends the traditional notions of liveness and interference to fluidic variables and operations, as needed to target the DMFB, which itself can be viewed as a spatially reconfigurable array. The code generator converts the IR into the following: (1) a set of electrode activation sequences for each basic block in the control flow graph (CFG); (2) a set of computations performed on sensor data, which dynamically determine the result of each control flow operation; and (3) a set of electrode activation sequences for each control flow transfer operation (CFG edge). The compiler is validated using a software simulator which produces animated videos of realistic bioassay execution on a DMFB.

    References

    [1]
    M. Pollack, A. Shenderov, and R. Fair. 2002. Electrowetting-based actuation of droplets for integrated microfluidics. Lab-on-a-Chip 2, 2 (May, 2002), 96-101.
    [2]
    J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen. 2006. Digital microfluidics using soft lithography. Lab-on-a-Chip 6, 1, (Jan. 2006), 96-104.
    [3]
    A. M. Amin, M. Thottethodi, T. N. Vijaykumar, S. Wereley, and S. C. Jacobson. 2007. Aquacore: A programmable architecture for microfluidics. In Proceedings of the 34th International Symposium on Computer Architecture (ISCA'07). 254-265.
    [4]
    E. C. Jensen, B. P. Bhat, and R. A. Mathies. 2010. A digital microfluidic platform for the automation of quantitative biomolecular assays. Lab-on-a-Chip 10, 6 (Mar. 2010), 685-691.
    [5]
    L. M. Fidalgo and S. J. Maerkl. 2011. A software-programmable microfluidic device for automated biology. Lab-on-a-Chip 11, 9 (May, 2011), 1612-1619,
    [6]
    K. Leung, H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson, A. P. Page, C-C. Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen. 2012. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academies of Sciences of the United States of America 109, 20 (May 2012). 7665- 7670.
    [7]
    A. M. Amin, R. Thakur, S. Madren, H. S. Chuang, M. Thottethodi, T. N. Vijaykumar, S. T. Wereley, and S. C. Jacobson. 2013. Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluidics and Nanofluidics 15, 5 (Nov. 2013), 657-659.
    [8]
    G. Linshiz, E. Jensen, N. Stawski, C. Bi, N. Elsbree, H. Jiao, J. Kim, R. Mathies, J. D. Keasling, and N. J. Hillson. 2016. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. Journal of Biological Engineering 10 (Feb. 2016), Article #3.
    [9]
    H. Ren, R. B. Fair, and M. G. Pollack. 2004. Automated on-chip droplet dispensing with volume control by eletrowetting actuation and capacitance metering. Sensors and Actuators B: Chemical 98, 2-3 (Mar. 2004). 319-327.
    [10]
    V. Srinivasan, V. K. Pamula, and R. B. Fair. Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta 507, 1 (Apr. 2004) 145- 150.
    [11]
    J. Gong and C-J. Kim. 2008. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab-on-a-Chip 8, 6 (June 2008). 898-906.
    [12]
    S. C. C. Shih, R. Fobel, P. Kumar, and A. R. Wheeler. 2011. A feedback control system for high-fidelity digital microfluidics. Lab-on-a-Chip 11, 3 (Feb. 2011). 535-540.
    [13]
    S. Sadeghi, H. Ding, G. J. Shah, S. Chen, P. Y. Keng, C-J. Kim, and R. M. van Dam. 2012. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Analytical Chemistry 84, 4 (Jan. 2012). 1915-1923.
    [14]
    M. J. Schertzer, R. Ben Mrad, and P. E. Sullivan. 2012. Automated detection of particle concentration and chemical reactions in EWOD devices. Sensors and Actuators B: Chemical 164, 1 (Mar. 2012). 1-6.
    [15]
    M. Murran and H. Najjaran. 2012. Capacitance-based droplet position estimator for digital microfluidic devices. Lab-on-a-Chip 12, 11 (Mar. 2012). 2053-2059.
    [16]
    L. Luan, M. W. Royal, R. Evans, R. B. Fair, and N. M. Jokerst. 2012. Chip scale optical microresonator sensors integrated with embedded thin film photodetectors on electrowetting digital microfluidics platforms. IEEE Sensors Journal 12, 6 (June 2012). 1794-1800.
    [17]
    T. Lederer, S. Clara, B. Jakoby, and W. Hilber. 2012. Integration of impedance spectroscopy sensors in a digital microfluidic platform. Microsystem Technologies 18, 7-8 (Aug. 2012). 1163-1180.
    [18]
    B. Bhattacharjee and H. Najjaran. 2012. Droplet sensing by measuring the capacitance between coplanar electrodes in a digital microfluidic system. Lab-on-a-Chip 12, 21 (Nov. 2012). 4416-4423.
    [19]
    J. Gao, X. Liu, T. Chen, P. I. Mak, Y. Du, M. I. Vai, B. Lin, and R. P. Martins. 2013. An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab-on-a-Chip 13, 3 (Feb. 2013). 443- 451.
    [20]
    S. C. Shih, I. Barbulovic-Nad, X. Yang, R. Fobel, and A. R. Wheeler. 2013. Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosensors and Bioelectronics 42, (Apr. 2013). 314-320.
    [21]
    M. W. Royal, N. M. Jokerst, and R. B. Fair. 2013. Droplet-based sensing: optical microresonator sensors embedded in digital electrowetting microfluidics systems. IEEE Sensors Journal 13, 12 (Dec. 2013). 4733-4742.
    [22]
    Y. Li, H. Li, and R. Baker. 2014. Volume and concentration identification by using an electrowetting on dielectric device. In Proceedings of the IEEE Dallas Circuits and Systems Conference (DCAS'14). 1-4.
    [23]
    Y. Li, H. Li, and R. J. Baker. 2015. A low-cost and high-resolution droplet position detector for an intelligent electrowetting on dielectric device. Journal of Laboratory Automation 20, 6 (Jan. 2015). 663-669.
    [24]
    Y. Shin and J. Lee. 2010. Machine vision for digital microfluidics. Review of Scientific Instruments 81, 1 (Jan. 2010). 014302.
    [25]
    A. S. Basu. 2013. Droplet morphometry and velocimetry (dmv): a video processing software for time-resolved, label-free tracking of droplet parameters," Lab-on-a-Chip 13, 10 (May 2013). 1892-1901.
    [26]
    R. Fobel, C. Fobel, and A. R. Wheeler. 2013. Dropbot: An open source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Applied Physics Letters 102, 19 (May 2013). 193513.
    [27]
    K. Hu, B. Hsu, A. Madison, K. Chakrabarty, and R. B. Fair. 2013. Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. In Proceedings of Design Automation and Test in Europe (DATE'13). 559-564.
    [28]
    P. Q. N. Vo, M. C. Husser, F. Ahmadi, H. Sinha, and S. C. C. Shih. 2017. Image-based feedback and analysis system for digital microfluidics. Lab-on-a-Chip 17, 20, (Sep. 2017), 3437-3446.
    [29]
    Z. Li, K. Y-T. Lai, J. McCrone, P-H. Yu, K. Chakrabarty, M. Pajic, T-Y. Ho, and C-Y. Lee. 2017. Efficient and adaptive error recovery in a micro-electrode-dot-array digital microfluidic biochip. IEEE TCAD (July 2017). Preprint.
    [30]
    Y. Zhao, T. Xu, and K. Chakrabarty. 2010. Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-a-chip. ACM JETC 6, 3 (Aug. 2010). Article #11.
    [31]
    M. Alistar, P. Pop, and J. Madsen. 2012. Online synthesis for error recovery in digital microfluidic biochips with operation variability. In Proceedings on the 2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP'12).
    [32]
    Y. Luo, K. Chakrabarty, and T-Y. Ho. 2013. Error recovery in cyberphysical digital microfluidic biochips. IEEE TCAD 32, 1 (Jan. 2013). 59-72.
    [33]
    Y. Luo, K. Chakrabarty, and T-Y. Ho. 2013. Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE TCAD 32, 12 (Dec. 2013). 1839-1852.
    [34]
    Y-L. Hsieh, T-Y. Ho, and Krishnendu Chakrabarty. 2014. Biochip synthesis and dynamic error recovery for sample preparation using digital microfluidics. IEEE TCAD 33, 2 (Feb. 2014). 183-196.
    [35]
    M. Ibrahim and K. Chakrabarty. 2015. Error recovery in digital microfluidics for personalized medicine. In Proceedings of Design Automation and Test in Europe (DATE'15). 247-252.
    [36]
    C. Jaress, P. Brisk, and D. T. Grissom. 2015. Rapid online fault recovery for cyber-physical digital microfluidic biochips. In Proceedings of the IEEE VLSI Test Symposium (VTS'15). 1-6.
    [37]
    M. Alistar and P. Pop. 2015. Synthesis of biochemical applications on digital microfluidic biochips with operation execution time variability. Integration: The VLSI Journal 51, (Sep. 2015) 158-168.
    [38]
    S. Poddar, S. Ghoshal, K. Chakrabarty, and B. B. Bhattacharya. 2016. Error-correcting sample preparation with cyberphysical digital microfluidic lab-on-chip. ACM TODAES 22, 1 (July 2016), Article #2.
    [39]
    M. Ibrahim, K. Chakrabarty, and K. Scott. 2017. Synthesis of cyberphysical digital-microfluidic biochips for real-time quantitative analysis. IEEE TCAD 36, 5 (May, 2017). 733-746.
    [40]
    H. Moon, S. K. Cho, R. L. Garrell, and C-J. Kim. 2002. Low voltage electrowetting-on-dielectric. Journal of Applied Physics 92, 7 (Sep. 2002).
    [41]
    J. Gong and C-J. Kim. 2008. Direct-referencing two-dimensional array digital microfluidics using multilayer printed circuit board. Journal of Microelectromechanical Systems 17, 2 (Apr. 2008). 257-264.
    [42]
    G. Wang, D. Teng, and S-K. Fan. 2011. Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology 5, 4 (Dec. 2011). 152-160.
    [43]
    J. H. Noh, J. Noh, E. Kreit, J. Heikenfeld, and P. D. Rack. 2012. Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors. Lab-on-a-Chip 2, 2 (Jan. 2012). 353-360.
    [44]
    B. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R. Hector, Y. Kubota, and H. Morgan. 2012. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab-on-a-Chip 12, 18 (Sep. 2012). 3305-3313.
    [45]
    G. Wang, D. Teng, Y-T. Lai, Y-W. Lu, Y. Ho, and C-Y. Lee. 2014. Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology 8, 3 (Sep. 2014). 163-171.
    [46]
    A. Banerjee, J. H. Noh, Y. Liu, P. D. Rack, and I. Papautsky. 2015. Programmable electrowetting with channels and droplets. Micromachines 6, 2 (Jan. 2015). 172-185.
    [47]
    S. Kalsi, M. Valiadi, M. N. Tsaloglou, L. Parry-Jones, A. Jacobs, R. Watson, C. Turner, R. Amos, B. Hadwen, J. Buse, C. Brown, M. Sutton, and H. Morgan. 2015. apid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform. Lab-on-a-Chip 5, 14 (Jul. 2015). 3065-3075.
    [48]
    D. Grissom, C. Curtis, and P. Brisk. 2014. Interpreting assays with control flow on digital microfluidic biochips. ACM JETC 10, 3 (Apr. 2014). Article #24.
    [49]
    C. Curtis and P. Brisk. 2015. Simulation of feedback-driven pcr assays on a 2d electrowetting array using a domain-specific high-level biological programming language. Microelectronic Engineering 148 (Dec. 2015). 110-116.
    [50]
    J. Ding, K. Chakrabarty, and R. B. Fair. 2001. Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays. IEEE TCAD 20, 12 (Dec. 2001). 1463-1468.
    [51]
    R. C. Backer, J. R. Monforte, and A. Poklis. 2005. Evaluation of the DRI oxycodone immunoassay for the detection of oxycodone in urine. Journal of Analytical Toxicology 29, 7 (Oct. 2005). 675-677.
    [52]
    C. L. Mao, K. D. Zientek, P. T. Colahan, M. Y. Kuo, C. H. Liu, K. M. Lee, and C. C. Chou. 2006. Development of an enzyme linked immunosorbent assay for fentanyl and applications of fentanyl antibody-coated nanoparticles for sample preparation. Journal of Pharmaceutical and Biomedical Analysis 41, 4 (June 2006). 1332-1341.
    [53]
    Y. Jiang, X. Huang, K. Hu, W. Yu, X. Yang, and L. Lv. 2011. Production and characterization of monoclonal antibodies against small hapten-ciprofloxacin. African Journal of Biotechnology 10, 65 (2011). 14342-14347.
    [54]
    E. Miller, A. H. C. Ng, U. Uddayasankar, and A. Wheeler. 2011. A digital microfluidic approach to heterogeneous immunoassays. Analytical and Bioanalytical Chemistry 339, 1 (Jan. 2011). 337-345.
    [55]
    V. Ananthanarayanan and W. Thies. 2010. Biocoder: A programming language for standardizing and automating biology protocols. Journal of Biological Engineering 4 (Nov. 2010). Article #13.
    [56]
    D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O. Kenneth, J. McDaniel, N. Liao, and P. Brisk. 2015. An open-source compiler and pcb synthesis tool for digital microfluidic biochips. Integration: the VLSI Journal 51 (Sep. 2015). 169-193.
    [57]
    A. J. Ricketts, K. M. Irick, N. Vijaykrishnan, and M. J. Irwin. 2006. Priority scheduling in digital microfluidics-based biochips. In Proceedings of Design, Automation and Test in Europe (DATE'06). 329-334.
    [58]
    F. Su and K. Chakrabarty. 2008. High-level synthesis of digital microfluidic biochips. ACM JETC 3, 4 (Jan. 2008). Article #1.
    [59]
    D. Grissom and P. Brisk. 2012. Path scheduling on digital microfluidic biochips. In Proceedings of the Design Automation Conference (DAC'12). 26-35.
    [60]
    K. O'Neal, D. Grissom, and P. Brisk. 2012. Force-directed list scheduling for digital microfluidic biochips. in Proceedings of the 20th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC'12). 7-11.
    [61]
    C. Liu, K. Liu, and J. Huang. 2013. Latency-optimization synthesis with module selection for digital microfluidic biochips. In Proceedings of the IEEE International SOC Conference (SOCC'13). 159-164.
    [62]
    A. Yadav, T. A. Dinh, D. Kitagawa, and S. Yamashita. 2016. ILP-based synthesis for sample preparation applications on digital microfluidic biochips. In Proceedings of the 29th International Conference on VLSI Design (VLSID'16).
    [63]
    F. Su and K. Chakrabarty. 2006. Module placement for fault-tolerant microfluidics-based biochips. ACM TODAES 11, 3 (July 2006). 682-710.
    [64]
    C. Liao and S. Hu. 2011. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement. IEEE Transactions on Nanobioscience 10, 1 (Mar. 2011). 51-58.
    [65]
    Y. Chen, C. Hsu, L. Tsai, T. Huang, and T. Ho. 2013. A reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips using 3- d deferred decision making technique. IEEE TCAD 32, 8 (Aug. 2013). 1151- 1162.
    [66]
    D. Grissom and P. Brisk. 2014. Fast online synthesis of digital microfluidic biochips. IEEE TCAD 33, 3 (Mar. 2014). 356-369.
    [67]
    F. Su, W. L. Hwang, and K. Chakrabarty. 2006. Droplet routing in the synthesis of digital microfluidic biochips. in Proceedings of Design, Automation and Test in Europe (DATE'06). 323-328.
    [68]
    K. Bohringer. 2006. Modeling and controlling parallel tasks in droplet-based microfluidic systems. IEEE TCAD 25, 2 (Feb. 2006). 334-344.
    [69]
    M. Cho and D. Z. Pan. 2008. A high-performance droplet routing algorithm for digital microfluidic biochips. IEEE TCAD 27, 10 (Oct. 2008). 1714-1724.
    [70]
    P. Yuh, C. Yang, and Y. Chang. 2008. BioRoute: A network-flowbased routing algorithm for the synthesis of digital microfluidic biochips. IEEE TCAD 27, 11 (Nov. 2008). 1928-1941.
    [71]
    T. Huang and T. Ho. 2009. A fast routability- and performance driven droplet routing algorithm for digital microfluidic biochips. In Proceedings of the 27th International Conference on Computer Design (ICCD'09). 445-450.
    [72]
    P. Roy, H. Rahaman, and P. Dasgupta. 2010. A novel droplet routing algorithm for digital microfluidic biochips. In Proceedings of the 20th ACM Great Lakes Symposium on VLSI (GLSVLSI'09). 441-446.
    [73]
    P. Roy, H. Rahaman, and P. Dasgupta. 2012. Two-level clustering-based techniques for intelligent droplet routing in digital microfluidic biochips. Integration: The VLSI Journal 45, 3 (June, 2012). 316-330.
    [74]
    O. Keszocze, R. Wille, and R. Drechsler. 2014. Exact routing for digital microfluidic biochips with temporary blockages. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD'14). 405-410.
    [75]
    O. Keszocze, R. Wille, K. Chakrabarty, and R. Drechsler. 2015. A general and exact routing methodology for digital microfluidic biochips. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD'15). 874-881.
    [76]
    O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, and R. Drechsler. 2017. Exact routing for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of the 22nd Asia and South Pacific Design Automation Conference (ASP-DAC'17).
    [77]
    T. Huang, C. Lin, and T. Ho. 2010. A contamination aware droplet routing algorithm for the synthesis of digital microfluidic biochips. IEEE TCAD 29, 11 (Nov. 2010). 1682-1695.
    [78]
    Y. Zhao and K. Chakrabarty. 2012. Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE TCAD 31, 6 (June 2012). 817-830.
    [79]
    H. Yao, Q. Wang, Y. Shen, T. Ho, and Y. Cai. 2016. Integrated functional and washing routing optimization for cross-contamination removal in digital microfluidic biochips. IEEE TCAD 35, 8 (Aug. 2016). 1283-1296.
    [80]
    P. Yuh, C. Yang, and Y. Chang. 2007. Placement of defect-tolerant digital microfluidic biochips using the t-tree formulation. ACM JETC 3, 3 (Nov. 2007). Article #13.
    [81]
    T. Xu and K. Chakrabarty. 2008. Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. ACM JETC 4, 3 (Aug. 2008). Article #11.
    [82]
    T. Xu, K. Chakrabarty, and F. Su. Defect-aware high-level synthesis and module placement for microfluidic biochips. IEEE TBioCAS 2, 1 (Mar. 2008). 50-62.
    [83]
    E. Maftei, P. Pop, and J. Madsen. 2010. Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable nonrectangular devices. Design Automation for Embedded Systems 14, 3 (Sep. 2010). 287-307.
    [84]
    E. Maftei, P. Pop, and J. Madsen. 2013. Module-based synthesis of digital microfluidic biochips with droplet-aware operation execution. ACM JETC 9, 1 (Feb. 2013). Article #2.
    [85]
    R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker. 2015. Scalable one-pass synthesis for digital microfluidic biochips. IEEE Design & Test 32, 6 (Dec. 2015). 41-50.
    [86]
    R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1991. Efficiently computing static single assignment form and the control dependence graph. ACM TOPLAS 13, 4 (Oct. 1991). 451-490.
    [87]
    J-D. Choi, R. Cytron, J. Ferrante. 1991. Automatic construction of sparse data flow evaluation graphs. In Proceedings of the International Conference on Principles of Programming Languages (POPL'91). 55-66.
    [88]
    P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. 1998. Practical improvements to the construction and destruction of static single assignment form. Software: Practice & Experience 28, 8 (July 1998). 859-881.
    [89]
    M. Jebrail, R. Renzi, A. Sinha, J. Van De Vreugde, C. Gondhalekar, C. Ambriz, R. Meagher, and S. Branda. 2015. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices. Lab-on-a-Chip 15, 1 (Jan. 2015). 151-158.
    [90]
    C. S. Ananian. 1999. The Static Single Information Form. M.S. Thesis. Massachusetts Institute of Technology, Cambridge, MA, USA.
    [91]
    J. Singer. 2005. Static Program Analysis based on Virtual Register Renaming. Ph.D. Thesis. University of Cambridge, UK.
    [92]
    B. Boissinot, P. Brisk, A. Darte, and F. Rastello. 2012. SSI properties revisited. ACM TECS 11S, 1 (June 2012). Article #21.
    [93]
    K. D. Cooper and L. Torczon. 2004. Engineering a Compiler. Morgan Kaufmann 2004, ISBN 1-55860-699-8
    [94]
    P. Paik, V. K. Pamula, and R. B. Fair. 2003. Rapid droplet mixers for digital microfluidic systems. Lab-on-a-Chip 3, 4 (Sep. 2003). 253-259.
    [95]
    K. Bazargan, R. Kastner, and M. Sarrafzadeh. 2000. Fast template placement for reconfigurable computing systems. IEEE Design & Test of Computers 17, 1 (Jan-Mar.2000). 68-83.
    [96]
    G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein. 1981. Register allocation via coloring. Computer Languages 6, 1 (Jan. 1981). 47-57.
    [97]
    P. Briggs, K. D. Cooper, and L. Torczon. 1994. Improvements to graph coloring register allocation. ACM TOPLAS 16, 3 (May, 1994). 428-455.
    [98]
    F. M. Q. Pereira and J. Palsberg. 2008. Register allocation by puzzle solving. In Proceedings of the 29th SIGPLAN Conference on Programming Language Design and Implementation (PLDI'08). 216-226.
    [99]
    V. C. Sreedhar, R. D-C. Ju, D. M. Gillies, and V. Santhanam. 1999. Translating out of static single assignment form. In Proceedings of the Static Analysis Symposium (SAS'99). 194-210.
    [100]
    Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg, and S. W. Reeves. 2002. Fast copy coalescing and live-range identification. In Proceedings of the 26th SIGPLAN Conference on Programming Language Design and Implementation (PLDI'02). 25-32.
    [101]
    F. Rastello, F. de Ferrière, and C. Guillon. 2004. Optimizing translation out of SSA using renaming constraints. In Proceedings of the International Symposium on Code Generation and Optimization (CGO'04). 265-278.
    [102]
    B. Boissinot, A. Darte, F. Rastello, B. D. de Dinechin, and C. Guillon. 2009. Revisiting out-of-SSA translation for correctness, code quality and efficiency. In Proceedings of the International Symposium on Code Generation and Optimization (CGO'09). 114-125.
    [103]
    F. M. Q. Pereira and J. Palsberg. 2009. SSA elimination after register allocation. In Proceedings of Compiler Construction (CC'09). 158-173.
    [104]
    UC Riverside Digital Microfluidic Biochip Static Synthesis Simulator. URL: http://microfluidics.cs.ucr.edu/dmfb_static_simulator/overview.html
    [105]
    Y. Luo, B.B. Bhattacharya, T-Y. Ho, and K. Chakrabarty. Design and optimization of a cyberphysical digital-microfluidic biochip for the polymerase chain reaction. IEEE TCAD 34, 1 (Jan. 2015). 29-42.
    [106]
    L. Freedman, I. Cockburn, and T. Simcoe. 2015. The economics of reproducibility in preclinical research. PLoS Biology 13, 6 (June 2015). e1002165.
    [107]
    K. Eric. Aquarium, your protocols will be assimilated. http://klavinslab.org/aquarium.html Accessed: 2011-11-13.
    [108]
    Autoprotocol: an open standard for life science experimental design and automation. URL: http://autoprotocol.org
    [109]
    Antha. URL: https://docs.antha.com
    [110]
    W. Thies, J. P. Urbanski, T. Thorsen, and S. Amarasinghe. Abstraction layers for scalable microfluidic biocomputing. Natural Computing 7, 2 (June 2008). 255-275.

    Cited By

    View all
    • (2024)PhageBox: An Open Source Digital Microfluidic Extension With Applications for Phage DiscoveryIEEE Transactions on Biomedical Engineering10.1109/TBME.2023.329541871:1(217-226)Online publication date: Jan-2024
    • (2023)Compiling Functions onto Digital MicrofluidicsProceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization10.1145/3579990.3580023(136-148)Online publication date: 17-Feb-2023
    • (2023)Inferring Activity Patterns from Sparse Step Counts Data with Recurrent Neural NetworksACM Transactions on Computing for Healthcare10.1145/35604684:1(1-20)Online publication date: 27-Feb-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CGO 2018: Proceedings of the 2018 International Symposium on Code Generation and Optimization
    February 2018
    377 pages
    ISBN:9781450356176
    DOI:10.1145/3179541
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 February 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. Digital Microfluidics
    2. Domain-specific language

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CGO '18
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 312 of 1,061 submissions, 29%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)43
    • Downloads (Last 6 weeks)5

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)PhageBox: An Open Source Digital Microfluidic Extension With Applications for Phage DiscoveryIEEE Transactions on Biomedical Engineering10.1109/TBME.2023.329541871:1(217-226)Online publication date: Jan-2024
    • (2023)Compiling Functions onto Digital MicrofluidicsProceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization10.1145/3579990.3580023(136-148)Online publication date: 17-Feb-2023
    • (2023)Inferring Activity Patterns from Sparse Step Counts Data with Recurrent Neural NetworksACM Transactions on Computing for Healthcare10.1145/35604684:1(1-20)Online publication date: 27-Feb-2023
    • (2023)Pied-Piper: Revealing the Backdoor Threats in Ethereum ERC Token ContractsACM Transactions on Software Engineering and Methodology10.1145/356026432:3(1-24)Online publication date: 26-Apr-2023
    • (2023)Addressing Confounding Feature Issue for Causal RecommendationACM Transactions on Information Systems10.1145/355975741:3(1-23)Online publication date: 7-Feb-2023
    • (2023)A Flooding-Based Droplet Routing Protocol for Digital Microfluidic BiochipJournal of Circuits, Systems and Computers10.1142/S021812662350302432:17Online publication date: 30-May-2023
    • (2023)A bidirectional droplet routing in digital microfluidics biochipMicroprocessors & Microsystems10.1016/j.micpro.2023.10477498:COnline publication date: 1-Apr-2023
    • (2022)Generative Datalog with Continuous DistributionsJournal of the ACM10.1145/355910269:6(1-52)Online publication date: 30-Aug-2022
    • (2022)WebAssembly-based Delta Sync for Cloud Storage ServicesACM Transactions on Storage10.1145/350284718:3(1-31)Online publication date: 21-Sep-2022
    • (2022)DEFUSE: An Interface for Fast and Correct User Space File System AccessACM Transactions on Storage10.1145/349455618:3(1-29)Online publication date: 26-Sep-2022
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media