Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Microfacet BSDFs Generated from NDFs and Explicit Microgeometry

Published: 26 June 2019 Publication History

Abstract

Microfacet distributions are considered nowadays as a reference for physically plausible BSDF representations. Many authors have focused on their physical and mathematical correctness, while introducing means to enlarge the range of possible appearances. This article is dedicated to Normal Distribution Functions (NDFs) and the influence of their shape on the rendered material aspect. We provide a complete framework for studying the impact of NDFs on the observed Bidirectional Scattering Distribution Functions (BSDFs). To explore very general NDFs, manually controlled by the user, and including anisotropic materials, we propose to use a piecewise continuous representation. It is derived with its associated Smith shadowing-masking function and importance sampling formulations for ensuring efficient global illumination computations. A new procedure is also proposed in this article for generating an explicit geometric micro-surface, used to evaluate the validity of analytic models and multiple scattering effects. The results are produced with a computer-generated process using path tracing. They show that this generation procedure is suitable with any NDF model, independently from its shape complexity.

Supplementary Material

ribardiere (ribardiere.zip)
Supplemental movie and image files for, Microfacet BSDFs Generated from NDFs and Explicit Microgeometry

References

[1]
A. Agrawal, R. Raskar, and R. Chellappa. 2006. What is the range of surface reconstructions from a gradient field? In Proceedings of the 9th European Conference on Computer Vision—Volume I (ECCV’06). Springer-Verlag, Berlin, 578--591.
[2]
M. Ashikhmin, S. Premoze, and P. Shirley. 2000. A microfacet-based BRDF generator. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). ACM, 65--74.
[3]
M. M. Bagher, C. Soler, and N. Holzschuch. 2012. Accurate fitting of measured reflectances using a shifted gamma micro-facet distribution. Comput. Graph. Forum 31, 4 (June 2012).
[4]
B. Beckers and P. Beckers. 2012. A general rule for disk and hemisphere partition into equal-area cells. Comput. Geom. 45, 7 (2012), 275--283.
[5]
P. Beckmann and A. Spizzichino. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon Press.
[6]
C. Bourlier, G. Berginc, and J. Saillard. 2002. One- and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations. IEEE Trans. Antennas Propagat. 50, 3 (2002).
[7]
C. Bourlier, J. Saillard, and G. Berginc. 2000. Effect of correlation between shadowing and shadowed points on the Wagner and Smith monostatic one-dimensional shadowing functions. IEEE Trans. Antennas Propagat. 48, 3 (2000), 437--446.
[8]
B. Burley. 2012. Physically based shading at disney. In Proceedings of the ACM SIGGRAPH 2012 Courses.
[9]
S. D. Butler and M. A. Marciniak. 2014. Robust categorization of microfacet BRDF models to enable flexible application-specific BRDF adaptation. In Proceedings of SPIE Conference 9205: Reflection, Scattering, and Diffraction from Surfaces IV.
[10]
B. Cabral, N. Max, and R. Springmeyer. 1987. Bidirectional reflection functions from surface bump maps. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 273--281.
[11]
L. Claustres, L. Barthe, and MI Paulin. 2007. Wavelet encoding of BRDFs for real-time rendering. In Proceedings of the Conference on Graphics Interface (GI’07). 169--176.
[12]
R. L. Cook and K. E. Torrance. 1982. A reflectance model for computer graphics. In Proceedings of the ACM SIGGRAPH Conference.
[13]
Z. Dong, B. Walter, S. Marschner, and D. P. Greenberg. 2015. Predicting appearance from measured microgeometry of metal surfaces. ACM Trans. Graph. 35, 1 (2015), 9:1--9:13.
[14]
J. Dupuy, E. Heitz, J. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Trans. Graph. 32, 6 (Nov. 2013), 211:1--211:11.
[15]
R. T. Frankot and R. Chellappa. 1988. A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10, 4 (July 1988), 439--451.
[16]
P. Gautron, J. Křivánek, S. N. Pattanaik, and K. Bouatouch. 2004. A novel hemispherical basis for accurate and efficient rendering. In Proceedings of the Rendering Techniques 2004 Conference: Eurographics Symposium on Rendering. Eurographics Association, 321--330.
[17]
J. S. Gondek, G. W. Meyer, and J. G. Newman. 1994. Wavelength dependent reflectance functions. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’94). ACM, New York, NY, 213--220.
[18]
Y. Guo, M. Hašan, and S. Zhao. 2018. Position-free Monte Carlo simulation for arbitrary layered BSDFs. ACM Trans. Graph. 37, 6 (2018).
[19]
F. Halley. 2012. Perceptually Relevant Browsing Environments for Large Texture Databases. Ph.D. Dissertation. Heriot-Watt University, Edinburgh, UK.
[20]
E. Heitz. 2014. Understanding the masking-shadowing function in microfacet-based BRDFs. J. Comput. Graph. Tech. 3, 2 (June 2014).
[21]
E. Heitz. 2015. Generating Procedural Beckmann Surfaces. Technical Report. https://eheitzresearch.wordpress.com/research/.
[22]
E. Heitz, C. Bourlier, and N. Pinel. 2013. Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface. Waves Random Complex Media 23, 3 (Aug. 2013).
[23]
E. Heitz and E. D’Eon. 2014. Importance sampling microfacet-based BSDFs using the distribution of visible normals. EGSR Proc. Comput. Graphics Forum 33, 4 (July 2014).
[24]
E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher. 2016. Multiple-scattering microfacet BSDFs with the Smith model. ACM Trans. Graph. SIGGRAPH Asia Proc. 35, 4 (August 2016).
[25]
N. Hoffman. 2016. Recent advances in physically based shading. In Proceedings of the ACM SIGGRAPH 2016 Courses.
[26]
N. Holzschuch and R. Pacanowski. 2017. A two-scale microfacet reflectance model combining reflection and diffraction. ACM Trans. Graph. 36, 4, Article 66 (July 2017), 66:1--66:12 pages.
[27]
B. K. P. Horn. 1970. Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View. Technical Report. Cambridge, MA.
[28]
M. B. Hullin, I. Ihrke, W. Heidrich, T. Weyrich, G. Damberg, and M. Fuchs. 2013. Computational fabrication and display of material appearance. In Proceedings of Eurographics—State of the Art Reports.
[29]
W. Jakob. 2010. Mitsuba renderer. Retrieved from http://www.mitsuba-renderer.org.
[30]
W. Jakob. 2014. An Improved Visible Normal Sampling Routine for the Beckmann Distribution. Technical Report. ETH Zürich.
[31]
J. Kautz and M. D. McCool. 1999. Interactive rendering with arbitrary BRDFs using separable approximations. In Proceedings of the 10th Eurographics Conference on Rendering (EGWR’99). Eurographics Association, 247--260.
[32]
C. Kelemen and L. Szirmay-Kalos. 2001. A microfacet-based coupled specular-matte BRDF model with importance sampling. In Proceedings of Eurographics 2001—Short Presentations. Eurographics Association.
[33]
C. Kulla and A. Conty. 2017. Physically based shading in theory and practice - Revisiting physically based shading at imageworks. In Proceedings of the ACM SIGGRAPH 2017 Courses.
[34]
M. Kurt, L. Szirmay-Kalos, and J. Křivánek. 2010. An anisotropic BRDF model for fitting and Monte Carlo rendering. ACM SIGGRAPH Comput. Graph. 44, 1 (Feb. 2010).
[35]
S. Lagarde. 2017. Open problems in real-time rendering - Physically based materials: Where are we? In Proceedings of the ACM SIGGRAPH 2017 Courses.
[36]
J. Lawrence, A. Ben-Artzi, C. DeCoro, W. Matusik, H. Pfister, R. Ramamoorthi, and S. Rusinkiewicz. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (July 2006).
[37]
J. H. Lee, A. Jarabo, D. S. Jeon, D. Gutierrez, and M. H. Kim. 2018. Practical multiple scattering for rough surfaces. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2018) 37, 6 (2018), 275:1--12.
[38]
Ro. R. Lewis. 1998. Light-driven Global Illumination with a Wavelet Representation of Light Transport. Ph.D. Dissertation. Vancouver, BC, Canada.
[39]
A. Luongo, V. Falster, M. B. Doest, D. Li, F. Regi, Y. Zhang, G. Tosello, J.B. Nielsen, H. Aanæs, and J. R. Frisvad. 2017. Modeling the anisotropic reflectance of a surface with microstructure engineered to obtain visible contrast after rotation. In Proceedings of the International Conference on Computer Vision 2017 Workshops (ICCV’17). 159--165.
[40]
C. A. Mack. 2013. Generating random rough edges, surfaces, and volumes. Appl. Optics 52:7 (2013), 1472--1480.
[41]
D. Mahajan, Yu-T. Tseng, and R. Ramamoorthi. 2008. An analysis of the in-out BRDF factorization for view-dependent relighting. In Proceedings of the 19th Eurographics Conference on Rendering (EGSR’08). Eurographics Association, Aire-la-Ville, Switzerland, 1137--1145.
[42]
K. K. Manesh, B. Ramamoorthy, and M. Singaperumal. 2010. Numerical generation of anisotropic 3D non-Gaussian engineering surfaces with specified 3D surface roughness parameters. Wear 268 (2010), 1371--1379.
[43]
D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot. 2017. Rendering rough opaque materials with interfaced lambertian microfacets. IEEE Trans. Visual. Comput. Graph. 24, 3 (2017), 1368--1380.
[44]
T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu. 1966. Computer Simulation Techniques. Wiley. 118--121.
[45]
M. Oren and S. K. Nayar. 1994. Generalization of Lambert’s reflectance model. In Proceedings of the ACM SIGGRAPH.
[46]
M. Papas, W. Jarosz, W. Jakob, S. Rusinkiewicz, W. Matusik, and T. Weyrich. 2011. Goal-based caustics. Comput. Graph. Forum (Proc. Eurographics) 30, 2 (Apr. 2011).
[47]
T. Pereira, C. L. A. P. Leme, S. Marschner, and S. Rusinkiewicz. 2017. Printing anisotropic appearance with magnetic flakes. ACM Trans. Graph. 36, 4, Article 123 (July 2017), 123:1--123:10 pages.
[48]
M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot. 2017. STD: Student’s t-distribution of slopes for microfacet-based BSDFs. Comput. Graph. Forum 36, 2 (2017), 421--429.
[49]
V. Ross, Dion, and G. Potvin. 2005. Detailed analytical approach to the Gaussian surface bidirectional reflectance distribution function specular component applied to the sea surface. J. Opt. Soc. Am. A 22, 11 (Nov. 2005).
[50]
Y. Schwartzburg, R. Testuz, A. Tagliasacchi, and M. Pauly. 2014. High-contrast computational caustic design. ACM Trans. Graph. 33, 4, Article 74 (July 2014), 74:1--74:11 pages.
[51]
G. Sharma, W. Wu, and E. N. Dalal. 2005. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research 8 Application 30, 1 (2005), 21--30.
[52]
B. Shi, Z. Mo, Z. Wu, D. Duan, S. K. Yeung, and P. Tan. 2018. A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. (2018).
[53]
B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Trans. Antennas Propagat. 15, 5 (Sept. 1967), 668--671.
[54]
C. Soler, K. Subr, and D. Nowrouzezahrai. 2018. A versatile parameterization for measured material manifolds. Comput. Graph. Forum 37, 2 (Apr. 2018), 1--10.
[55]
P. Theodossiou. 1998. Financial data and the skewed generalized T distribution. Manage. Sci. 44, 12-Part-1 (1998), 1650--1661.
[56]
E. I. Thorsos. 1988. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am. 83 (1988), 78--92.
[57]
K. E. Torrance and E. M. Sparrow. 1967. Theory for off-specular reflection from roughened surfaces. J. Optic. Soc. Amer. 57, 9 (Sep 1967).
[58]
T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Optic. Soc. Amer. 65, 5 (May 1975).
[59]
K. Uchida, J. Honda, and K.-Y. Yoon. 2009. An algorithm for rough surface generation with inhomogeneous parameters. In Proceedings of the IEEE International Conference on Parallel Processing. 166--173.
[60]
M. Uchidate, T. Shimizu, A. Iwabuchi, and K. Yanagi. 2004. Generation of reference data of 3D surface texture using the non-causal 2D AR model. Wear 257 (2004), 1288--1295.
[61]
B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet models for refraction through rough surfaces. In Proceedings of the EGSR Computer Graphics Forum.
[62]
D. Wellems, S. Ortega, D. Bowers, J. Boger, and M. Fetrow. 2006. Long wave infrared polarimetric model: Theory, measurements and parameters. J. Optics A: Pure Appl. Optics 8, 10 (2006).
[63]
S. H. Westin, J. R. Arvo, and K. E. Torrance. 1992. Predicting reflectance functions from complex surfaces. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 255--264.
[64]
T. Weyrich, P. Peers, W. Matusik, and S. Rusinkiewicz. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, Article 32 (July 2009), 32:1--32:6 pages.
[65]
Wikipedia. 2018. Skewed generalized t distribution. Retrieved from https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution.
[66]
R. Woodham. 1980. Photometric method for determining surface orientation from multiple images. Opt. Eng. 19 (1980), 139--144.
[67]
H. Wu, J. Dorsey, and H. Rushmeier. 2011. Physically based interactive bi-scale material design. ACM Trans. Graph. 30, 145 (Dec. 2011).
[68]
J.-J. Wu. 2004. Simulation of non-Gaussian surfaces with FFT. Tribol. Int. 37 (2004), 339--346.
[69]
F. Xie and P. Hanrahan. 2018. Multiple scattering from distributions of specular V-grooves. ACM Trans. Graph. 37, 6 (Dec. 2018), 276:1--276:14.
[70]
W. Xie, Y. Zhang, C. C. L. Wang, and R. C. k. Chung. 2014. Surface-from-gradients: An approach based on discrete geometry processing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14). 2203--2210.
[71]
L.-Q. Yan, M. Hašan, S. Marschner, and R. Ramamoorthi. 2016. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graph.s (Proc. SIGGRAPH) 35, 4 (2016).
[72]
L.-Q. Yan, M. Hašan, B. Walter, S. Marschner, and R. Ramamoorthi. 2018. Rendering specular microgeometry with wave optics. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018).
[73]
M. Yan, L.-Q.and Hašan, W. Jakob, J. Lawrence, S. Marschner, and R. Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014).
[74]
T. Zeltner and W. Jakob. 2018. The layer laboratory: A calculus for additive and subtractive composition of anisotropic surface reflectance. Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018), 74:1--74:14.
[75]
M. Zou, B. Yu, Y. Feng, and P. Xu. 2007. A Monte Carlo method for simulating fractal surfaces. Physica A 386 (2007), 176--186.

Cited By

View all
  • (2024)Virtually measuring layered material appearanceJournal of the Optical Society of America A10.1364/JOSAA.51460441:5(959)Online publication date: 25-Apr-2024
  • (2024)Anisotropic Specular Image‐Based Lighting Based on BRDF Major Axis SamplingComputer Graphics Forum10.1111/cgf.1523343:7Online publication date: 30-Oct-2024
  • (2023)Orientable Dense Cyclic Infill for Anisotropic Appearance FabricationACM Transactions on Graphics10.1145/359241242:4(1-13)Online publication date: 26-Jul-2023
  • Show More Cited By

Index Terms

  1. Microfacet BSDFs Generated from NDFs and Explicit Microgeometry

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 38, Issue 5
    October 2019
    191 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3341165
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 June 2019
    Accepted: 01 May 2019
    Revised: 01 May 2019
    Received: 01 October 2018
    Published in TOG Volume 38, Issue 5

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Material appearance
    2. Smith model
    3. microfacet BSDF
    4. microsurface generation
    5. multiple scattering

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)63
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Virtually measuring layered material appearanceJournal of the Optical Society of America A10.1364/JOSAA.51460441:5(959)Online publication date: 25-Apr-2024
    • (2024)Anisotropic Specular Image‐Based Lighting Based on BRDF Major Axis SamplingComputer Graphics Forum10.1111/cgf.1523343:7Online publication date: 30-Oct-2024
    • (2023)Orientable Dense Cyclic Infill for Anisotropic Appearance FabricationACM Transactions on Graphics10.1145/359241242:4(1-13)Online publication date: 26-Jul-2023
    • (2023)Microfacet Theory for Non-Uniform HeightfieldsACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591486(1-10)Online publication date: 23-Jul-2023
    • (2023)Improved normal distribution function for skin specular reflection rendering based on GGX distributionThird International Conference on Computer Graphics, Image, and Virtualization (ICCGIV 2023)10.1117/12.3008031(30)Online publication date: 14-Nov-2023
    • (2023)Gloss assessment with deep photometric stereo: application to human skinSixteenth International Conference on Quality Control by Artificial Vision10.1117/12.2692082(25)Online publication date: 28-Jul-2023
    • (2022)Position-free multiple-bounce computations for smith microfacet BSDFsACM Transactions on Graphics10.1145/3528223.353011241:4(1-14)Online publication date: 22-Jul-2022
    • (2022)Microsurface TransformationsComputer Graphics Forum10.1111/cgf.1459041:4(105-116)Online publication date: 30-Jul-2022
    • (2022)Coherent Spatially Varying Bidirectional Scattering Distribution Function of Rough SurfaceIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2021.313657260(1-17)Online publication date: 2022
    • (2021)Automatic Recognition of Financial Instruments Based on Anisotropic Partial Differential EquationsAdvances in Mathematical Physics10.1155/2021/65298592021(1-13)Online publication date: 28-Oct-2021
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media