Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A differential theory of radiative transfer

Published: 08 November 2019 Publication History

Abstract

Physics-based differentiable rendering is the task of estimating the derivatives of radiometric measures with respect to scene parameters. The ability to compute these derivatives is necessary for enabling gradient-based optimization in a diverse array of applications: from solving analysis-by-synthesis problems to training machine learning pipelines incorporating forward rendering processes. Unfortunately, physics-based differentiable rendering remains challenging, due to the complex and typically nonlinear relation between pixel intensities and scene parameters.
We introduce a differential theory of radiative transfer, which shows how individual components of the radiative transfer equation (RTE) can be differentiated with respect to arbitrary differentiable changes of a scene. Our theory encompasses the same generality as the standard RTE, allowing differentiation while accurately handling a large range of light transport phenomena such as volumetric absorption and scattering, anisotropic phase functions, and heterogeneity. To numerically estimate the derivatives given by our theory, we introduce an unbiased Monte Carlo estimator supporting arbitrary surface and volumetric configurations. Our technique differentiates path contributions symbolically and uses additional boundary integrals to capture geometric discontinuities such as visibility changes.
We validate our method by comparing our derivative estimations to those generated using the finite-difference method. Furthermore, we use a few synthetic examples inspired by real-world applications in inverse rendering, non-line-of-sight (NLOS) and biomedical imaging, and design, to demonstrate the practical usefulness of our technique.

Supplementary Material

ZIP File (a227-zhang.zip)
Supplemental files.

References

[1]
James Arvo. 1994. The Irradiance Jacobian for partially occluded polyhedral sources. In SIGGRAPH '94. 343--350.
[2]
Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Niessner. 2019. Inverse Path Tracing for Joint Material and Lighting Estimation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[3]
Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A Radiative Transfer Framework for Non-exponential Media. ACM Trans. Graph. 37, 6 (2018), 225:1--225:17.
[4]
James F. Blinn. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In SIGGRAPH '82. 21--29.
[5]
Kenneth M Case and Paul Frederick Zweifel. 1967. Linear transport theory. (1967).
[6]
Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J Seron, and François X Sillion. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5 (2005), 303--328.
[7]
Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Courier Corporation.
[8]
Vivide Tuan-Chyan Chang, Peter S Cartwright, Sarah M Bean, Greg M Palmer, Rex C Bentley, and Nirmala Ramanujam. 2009. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy. Neoplasia 11, 4 (2009), 325--332.
[9]
Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2018. Inverse transport networks. arXiv preprint arXiv:1809.10820 (2018).
[10]
Min Chen and James Arvo. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 4 (2000), 246--278.
[11]
Tom Collier, Dizem Arifler, Anais Malpica, Michele Follen, and Rebecca Richards-Kortum. 2003. Determination of epithelial tissue scattering coefficient using confocal microscopy. IEEE Journal of selected topics in quantum electronics 9, 2 (2003), 307--313.
[12]
Harley Flanders. 1973. Differentiation under the integral sign. The American Mathematical Monthly 80, 6 (1973), 615--627.
[13]
Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An Evaluation of Computational Imaging Techniques for Heterogeneous Inverse Scattering. In Computer Vision - ECCV 2016. Springer International Publishing, 685--701.
[14]
Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013. Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 6 (2013), 162:1--162:13.
[15]
Milovš Hašan and Ravi Ramamoorthi. 2013. Interactive albedo editing in path-traced volumetric materials. ACM Trans. Graph. 32, 2 (2013), 11:1--11:11.
[16]
Homan Igehy. 1999. Tracing ray differentials. In SIGGRAPH '99. 179--186.
[17]
Akira Ishimaru. 1978. Wave propagation and scattering in random media. Academic press New York.
[18]
Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29, 4 (2010), 53:1--53:13.
[19]
Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4 (2012), 58:1--58:13.
[20]
James T. Kajiya and Brian P Von Herzen. 1984. Ray tracing volume densities. SIGGRAPH Comput. Graph. 18, 3 (1984), 165--174.
[21]
Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D mesh renderer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3907--3916.
[22]
Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the metropolis light transport algorithm. In Computer Graphics Forum, Vol. 21. Wiley Online Library, 531--540.
[23]
Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2015. Matching real fabrics with micro-appearance models. ACM Trans. Graph. 35, 1 (2015), 1:1--1:26.
[24]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[25]
Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash Mansinghka. 2015. Picture: A Probabilistic Programming Language for Scene Perception. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[26]
Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Trans. Graph. 36, 4 (2017), 111:1--111:16.
[27]
Eric P Lafortune and Yves D Willems. 1996. Rendering participating media with bidirectional path tracing. In Rendering techniques' 96. Springer, 91--100.
[28]
L. Gary Leal. 2007. Advanced Transport Phenomena: fluid mechanics and convective transport processes. Vol. 7. Cambridge University Press.
[29]
Tzu-Mao Li. 2019. Differentiable visual computing. MIT PhD Dissertation.
[30]
Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018a. Differentiable Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018), 222:1--222:11.
[31]
Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. 2015. Anisotropic Gaussian mutations for Metropolis light transport through Hessian-Hamiltonian dynamics. ACM Trans. Graph. 34, 6 (2015), 209:1--209:13.
[32]
Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2018b. Learning to reconstruct shape and spatially-varying reflectance from a single image. ACM Trans. Graph. 37, 6 (2018), 269:1--269:11.
[33]
Matthew M Loper and Michael J Black. 2014. OpenDR: An approximate differentiable renderer. In European Conference on Computer Vision. Springer, 154--169.
[34]
Abhimitra Meka, Maxim Maximov, Michael Zollhoefer, Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt, and Christian Theobalt. 2018. Lime: Live intrinsic material estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6315--6324.
[35]
Michael I Mishchenko, Larry D Travis, and Andrew A Lacis. 2006. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press.
[36]
Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo methods for volumetric light transport simulation. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 551--576.
[37]
Matthew O'Toole, David B Lindell, and Gordon Wetzstein. 2018. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555, 7696 (2018), 338.
[38]
Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport for participating media. In Rendering Techniques 2000. Springer, 11--22.
[39]
GC Pomraning. 1973. The equations of radiation hydrodynamics. International Series of Monographs in Natural Philosophy, Oxford: Pergamon Press, 1973 (1973).
[40]
Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1 (2007), 2:1--2:21.
[41]
Holly E. Rushmeier and Kenneth E. Torrance. 1987. The zonal method for calculating light intensities in the presence of a participating medium. In SIGGRAPH '87. 293--302.
[42]
Charles Saunders, John Murray-Bruce, and Vivek K Goyal. 2019. Computational periscopy with an ordinary digital camera. Nature 565, 7740 (2019), 472.
[43]
Soumyadip Sengupta, Angjoo Kanazawa, Carlos D Castillo, and David W Jacobs. 2018. SfSNet: Learning shape, reflectance and illuminance of faces in the wild'. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6296--6305.
[44]
Jerome Spanier and Ely M Gelbard. 1969. Monte Carlo principles and neutron transport problems. The Addison-Wesley Publishing Company.
[45]
Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr Didyk, Bernd Bickel, Jaroslav Křivánek, Karol Myszkowski, and Tim Weyrich. 2019. Geometry-aware Scattering Compensation for 3D Printing. ACM Trans. Graph. 38, 4 (2019), 111:1--111:14.
[46]
Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis Gkioulekas. 2019. Beyond Volumetric Albedo - A Surface Optimization Framework for Non-Line-Of-Sight Imaging. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[47]
Hendrik Christoffel van de Hulst et al. 1957. Light scattering by small particles. (1957).
[48]
Zdravko Velinov, Marios Papas, Derek Bradley, Paulo Gotardo, Parsa Mirdehghan, Steve Marschner, Jan Novák, and Thabo Beeler. 2018. Appearance Capture and Modeling of Human Teeth. ACM Trans. Graph. 37, 6 (2018), 207:1--207:13.
[49]
Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan, Moungi G Bawendi, and Ramesh Raskar. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature communications 3 (2012), 745.
[50]
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research 11, Dec (2010), 3371--3408.
[51]
DC Walker, BH Brown, AD Blackett, J Tidy, and RH Smallwood. 2003. A study of the morphological parameters of cervical squamous epithelium. Physiological measurement 24, 1 (2003), 121.
[52]
Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. 2017. Neural scene de-rendering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 699--707.
[53]
Shumian Xin, Sotiris Nousias, Kiriakos N Kutulakos, Aswin C Sankaranarayanan, Srinivasa G Narasimhan, and Ioannis Gkioulekas. 2019. A theory of fermat paths for non-line-of-sight shape reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[54]
Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling scattering parameters for rendering anisotropic media. ACM Trans. Graph. 35, 6 (2016), 166:1--166:11.

Cited By

View all
  • (2024)A Brief Review on Differentiable Rendering: Recent Advances and ChallengesElectronics10.3390/electronics1317354613:17(3546)Online publication date: 6-Sep-2024
  • (2024)Computational Modeling of Light Scattering in Polymer Nanoparticles for Optical CharacterizationModelado computacional de la dispersión de luz en nanopartículas de polímero para caracterización ópticaModelagem computacional da dispersão da luz em nanopartículas de polímero para caracterização ópticaCiencia e Ingeniería Neogranadina10.18359/rcin.727634:2(63-75)Online publication date: 29-Oct-2024
  • (2024)View-Independent Adjoint Light Tracing for Lighting Design OptimizationACM Transactions on Graphics10.1145/366218043:3(1-16)Online publication date: 3-May-2024
  • Show More Cited By

Index Terms

  1. A differential theory of radiative transfer

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 38, Issue 6
    December 2019
    1292 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3355089
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 November 2019
    Published in TOG Volume 38, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Monte Carlo path tracing
    2. differentiable rendering
    3. radiative transfer

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)128
    • Downloads (Last 6 weeks)14
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A Brief Review on Differentiable Rendering: Recent Advances and ChallengesElectronics10.3390/electronics1317354613:17(3546)Online publication date: 6-Sep-2024
    • (2024)Computational Modeling of Light Scattering in Polymer Nanoparticles for Optical CharacterizationModelado computacional de la dispersión de luz en nanopartículas de polímero para caracterización ópticaModelagem computacional da dispersão da luz em nanopartículas de polímero para caracterização ópticaCiencia e Ingeniería Neogranadina10.18359/rcin.727634:2(63-75)Online publication date: 29-Oct-2024
    • (2024)View-Independent Adjoint Light Tracing for Lighting Design OptimizationACM Transactions on Graphics10.1145/366218043:3(1-16)Online publication date: 3-May-2024
    • (2024)Target-Aware Image Denoising for Inverse Monte Carlo RenderingACM Transactions on Graphics10.1145/365818243:4(1-11)Online publication date: 19-Jul-2024
    • (2024)Conditional Mixture Path Guiding for Differentiable RenderingACM Transactions on Graphics10.1145/365813343:4(1-11)Online publication date: 19-Jul-2024
    • (2024)Path-Space Differentiable Rendering of Implicit SurfacesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657473(1-11)Online publication date: 13-Jul-2024
    • (2024)Fabricable 3D Wire ArtACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657453(1-11)Online publication date: 13-Jul-2024
    • (2024)NeRF as a Non-Distant Environment Emitter in Physics-based Inverse RenderingACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657404(1-12)Online publication date: 13-Jul-2024
    • (2024)Curved Image Triangulation Based on Differentiable RenderingComputer Graphics Forum10.1111/cgf.1523243:7Online publication date: 24-Oct-2024
    • (2024)A Real-Time and Interactive Fluid Modeling System for Mixed RealityIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345614030:11(7310-7320)Online publication date: Nov-2024
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media