Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3641519.3657453acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Fabricable 3D Wire Art

Published: 13 July 2024 Publication History

Abstract

This paper presents a computational method for automatically creating fabricable 3D wire sculptures from various input modalities, including 3D models, images, and even text. There are several challenges to wire art creation. For example, artists must express the desired visual as a sparse wire representation. It is also difficult to manually bend wires in the air without guidance to fabricate the designed 3D curves. Our workflow solves these challenges by using two core techniques. First, we present an algorithm that automatically generates a fabricable 3D curve representation of the target based on a loss function that measures the semantic distance between the rendered curve and the target. The loss function can be defined using different pre-trained vision-language neural networks to generate wire art from different input types. The loss function is then optimized using differentiable rendering specifically targeting 3D parametric curves. Our method can incorporate various fabrication constraints on the wire as additional regularization terms in the optimization process. Second, we present an algorithm to generate a 3D printable jig structure that can be used to fabricate the generated wire path. The major challenge in the jig generation stems from the design of an intersection-free surface mesh for 3D printing, which we address with our inflation algorithm. The experimental results indicate that our method can handle a wider range of input types and can produce physically fabricable wire shapes compared to previous wire generation methods. Various wire arts have been fabricated using our 3D-printed jig to demonstrate its effectiveness in 3D wire bending.

Supplemental Material

MP4 File - presentation
presentation
MP4 File
Supplemental Material
PDF File
Supplemental Material

References

[1]
Sai Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Fredo Durand, Aaron Lefohn, and Yong He. 2023. SLANG.D: Fast, Modular and Differentiable Shader Programming. ACM Transactions on Graphics (SIGGRAPH Asia) 42, 6 (December 2023), 1–28. https://doi.org/10.1145/3618353
[2]
Pierre Bénard and Aaron Hertzmann. 2019. Line Drawings from 3D Models: A Tutorial. Found. Trends. Comput. Graph. Vis. 11, 1–2 (sep 2019), 1–159. https://doi.org/10.1561/0600000075
[3]
Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3 (aug 2008), 1–12. https://doi.org/10.1145/1360612.1360662
[4]
Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the Art on Stylized Fabrication. Computer Graphics Forum 37, 6 (2018), 325–342. https://doi.org/10.1111/cgf.13327
[5]
Kenneth A. Brakke. 1992. The Surface Evolver. Experimental Mathematics 1, 2 (1992), 141–165. https://doi.org/10.1080/10586458.1992.10504253
[6]
Gregory Buck and Jeremey Orloff. 1995. A simple energy function for knots. Topology and its Applications 61, 3 (1995), 205–214. https://doi.org/10.1016/0166-8641(94)00024-W
[7]
Byoungwon Choe, Min Gyu Choi, and Hyeong-Seok Ko. 2005. Simulating complex hair with robust collision handling. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’05). 153–160. https://doi.org/10.1145/1073368.1073389
[8]
Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32 (2013). Issue 4.
[9]
Fernando De Goes, Siome Goldenstein, Mathieu Desbrun, and Luiz Velho. 2011. Technical Section: Exoskeleton: Curve Network Abstraction for 3D Shapes. Comput. Graph. 35, 1 (feb 2011), 112–121. https://doi.org/10.1016/j.cag.2010.11.012
[10]
Doug DeCarlo and Anthony Santella. 2002. Stylization and Abstraction of Photographs. ACM Trans. Graph. 21, 3 (jul 2002), 769–776. https://doi.org/10.1145/566654.566650
[11]
Anjana Deva Prasad, Aditya Balu, Harshil Shah, Soumik Sarkar, Chinmay Hegde, and Adarsh Krishnamurthy. 2022. NURBS-Diff: A Differentiable Programming Module for NURBS. Computer-Aided Design 146 (2022), 103199. https://doi.org/10.1016/j.cad.2022.103199
[12]
Manfredo P. do Carmo. 1976. Differential geometry of curves and surfaces.Prentice Hall. I–VIII, 1–503 pages.
[13]
Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured annotations for 2D-to-3D modeling. In ACM SIGGRAPH Asia 2009 Papers (Yokohama, Japan) (SIGGRAPH Asia ’09). Article 148, 9 pages. https://doi.org/10.1145/1661412.1618494
[14]
Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives (second ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898717761
[15]
Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. 2018. Multi-view Wire Art. ACM Trans. Graph. 37, 6, Article 242 (2018), 11 pages.
[16]
Emmanuel Iarussi, Wilmot Li, and Adrien Bousseau. 2015. WrapIt: Computer-Assisted Crafting of Wire Wrapped Jewelry. ACM Trans. Graph. 34, 6, Article 221 (nov 2015), 8 pages. https://doi.org/10.1145/2816795.2818118
[17]
Shir Iluz, Yael Vinker, Amir Hertz, Daniel Berio, Daniel Cohen-Or, and Ariel Shamir. 2023. Word-As-Image for Semantic Typography. ACM Trans. Graph. 42, 4, Article 151 (jul 2023), 11 pages. https://doi.org/10.1145/3592123
[18]
Ajay Jain, Amber Xie, and Pieter Abbeel. 2023. VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1911–1920.
[19]
Wenzel Jakob. 2022. nanobind: tiny and efficient C++/Python bindings. https://github.com/wjakob/nanobind.
[20]
Yucheol Jung, Hyomin Kim, Gyeongha Hwang, Seung-Hwan Baek, and Seungyong Lee. 2023. Mesh Density Adaptation for Template-Based Shape Reconstruction. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH ’23). Article 53, 10 pages. https://doi.org/10.1145/3588432.3591498
[21]
Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knitted cloth at the yarn level. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH ’08). Article 65, 9 pages. https://doi.org/10.1145/1399504.1360664
[22]
Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey. arxiv:2006.12057
[23]
Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In International Conference on Learning Representations (ICLR). San Diego, CA, USA.
[24]
Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering. ACM Transactions on Graphics 39, 6 (2020).
[25]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020a. Incremental Potential Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM Trans. Graph. 39, 4, Article 49 (aug 2020), 20 pages. https://doi.org/10.1145/3386569.3392425
[26]
Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages. https://doi.org/10.1145/3450626.3459767
[27]
Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11.
[28]
Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020b. Differentiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.
[29]
Selena Zihan Ling, Nicholas Sharp, and Alec Jacobson. 2022. VectorAdam for Rotation Equivariant Geometry Optimization. In Advances in Neural Information Processing Systems, Vol. 35. Curran Associates, Inc., 4111–4122.
[30]
Wallace Lira, Chi-Wing Fu, and Hao Zhang. 2018. Fabricable Eulerian Wires for 3D Shape Abstraction. ACM Trans. Graph. 37, 6, Article 240 (dec 2018), 13 pages. https://doi.org/10.1145/3272127.3275049
[31]
Lingjie Liu, Duygu Ceylan, Cheng Lin, Wenping Wang, and Niloy J. Mitra. 2017. Image-based Reconstruction of Wire Art. ACM SIGGRAPH 2017 (2017).
[32]
Lingjie Liu, Nenglun Chen, Duygu Ceylan, Christian Theobalt, Wenping Wang, and Niloy J. Mitra. 2018. CurveFusion: Reconstructing Thin Structures from RGBD Sequences. ACM Transactions on Graphics (2018).
[33]
Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J. Mitra. 2009. Abstraction of Man-Made Shapes. ACM Trans. Graph. 28, 5 (dec 2009), 1–10. https://doi.org/10.1145/1618452.1618483
[34]
Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable Planar-Rod Structures. ACM Transactions on Graphics (SIGGRAPH 2016) 35, 4 (2016).
[35]
Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. 2022. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. In Proceedings of the 39th International Conference on Machine Learning.
[36]
Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Rendering of Geometry. ACM Trans. Graph. 40, 6, Article 248 (dec 2021), 13 pages. https://doi.org/10.1145/3478513.3480501
[37]
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). https://doi.org/10.1145/3355089.3356498
[38]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: an imperative style, high-performance deep learning library. Curran Associates Inc., Red Hook, NY, USA.
[39]
Jianbo Peng, Daniel Kristjansson, and Denis Zorin. 2004. Interactive modeling of topologically complex geometric detail. In ACM SIGGRAPH 2004 Papers (Los Angeles, California) (SIGGRAPH ’04). 635–643. https://doi.org/10.1145/1186562.1015773
[40]
Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion: Text-to-3D using 2D Diffusion. arxiv:2209.14988
[41]
Zhiyu Qu, Lan Yang, Honggang Zhang, Tao Xiang, Kaiyue Pang, and Yi-Zhe Song. 2023. Wired Perspectives: Multi-View Wire Art Embraces Generative AI. arxiv:2311.15421
[42]
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning.
[43]
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-Resolution Image Synthesis With Latent Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10684–10695.
[44]
Silvia Sellán, Jacob Kesten, Ang Yan Sheng, and Alec Jacobson. 2020. Opening and Closing Surfaces. ACM Trans. Graph. 39, 6, Article 198 (nov 2020), 13 pages. https://doi.org/10.1145/3414685.3417778
[45]
Jonas Spillmann and Matthias Teschner. 2008. An Adaptive Contact Model for the Robust Simulation of Knots. Computer Graphics Forum 27, 2 (2008), 497–506. https://doi.org/10.1111/j.1467-8659.2008.01147.x
[46]
Michele Vidulis, Yingying Ren, Julian Panetta, Eitan Grinspun, and Mark Pauly. 2023. Computational Exploration of Multistable Elastic Knots. ACM Trans. Graph. 42, 4, Article 73 (jul 2023), 16 pages. https://doi.org/10.1145/3592399
[47]
Yael Vinker, Yuval Alaluf, Daniel Cohen-Or, and Ariel Shamir. 2023. CLIPascene: Scene Sketching with Different Types and Levels of Abstraction. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 4146–4156.
[48]
Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Roman Christian Bachmann, Amit Haim Bermano, Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. 2022. CLIPasso: Semantically-Aware Object Sketching. ACM Trans. Graph. 41, 4, Article 86 (jul 2022), 11 pages. https://doi.org/10.1145/3528223.3530068
[49]
Holger Winnemöller, Sven C. Olsen, and Bruce Gooch. 2006. Real-Time Video Abstraction. In ACM SIGGRAPH 2006 Papers (Boston, Massachusetts) (SIGGRAPH ’06). 1221–1226. https://doi.org/10.1145/1179352.1142018
[50]
Markus Worchel and Marc Alexa. 2023. Differentiable Rendering of Parametric Geometry. ACM Trans. Graph. 42, 6, Article 232 (dec 2023), 18 pages. https://doi.org/10.1145/3618387
[51]
Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. 2022. Aδ : autodiff for discontinuous programs - applied to shaders. ACM Trans. Graph. 41, 4, Article 135 (jul 2022), 24 pages. https://doi.org/10.1145/3528223.3530125
[52]
Zhijin Yang, Pengfei Xu, Hongbo Fu, and Hui Huang. 2021. WireRoom: Model-Guided Explorative Design of Abstract Wire Art. ACM Trans. Graph. 40, 4, Article 128 (jul 2021), 13 pages. https://doi.org/10.1145/3450626.3459796
[53]
Chris Yu, Henrik Schumacher, and Keenan Crane. 2021. Repulsive Curves. ACM Trans. Graph. 40, 2, Article 10 (may 2021), 21 pages. https://doi.org/10.1145/3439429
[54]
Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-Sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Article 99 (jul 2016), 10 pages. https://doi.org/10.1145/2897824.2925888
[55]
Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A Differential Theory of Radiative Transfer. ACM Trans. Graph. 38, 6 (2019), 227:1–227:16.
[56]
Ziyi Zhang, Nicolas Roussel, and Wenzel Jakob. 2023. Projective Sampling for Differentiable Rendering of Geometry. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 42, 6 (Dec. 2023). https://doi.org/10.1145/3618385

Cited By

View all
  • (2024)Tune-It: Optimizing Wire Reconfiguration for Sculpture ManufacturingSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687588(1-11)Online publication date: 3-Dec-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '24: ACM SIGGRAPH 2024 Conference Papers
July 2024
1106 pages
ISBN:9798400705250
DOI:10.1145/3641519
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Curve optimization
  2. Differentiable rendering
  3. Shape modeling

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SIGGRAPH '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)423
  • Downloads (Last 6 weeks)49
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Tune-It: Optimizing Wire Reconfiguration for Sculpture ManufacturingSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687588(1-11)Online publication date: 3-Dec-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media