Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3357384.3358090acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
short-paper

Cost-effective Resource Provisioning for Spark Workloads

Published: 03 November 2019 Publication History

Abstract

Spark is one of the prevalent big data analytical platforms. Configuring proper resource provision for Spark jobs is challenging but essential for organizations to save time, achieve high resource utilization, and remain cost-effective. In this paper, we study the challenge of determining the proper parameter values that meet the performance requirements of workloads while minimizing both resource cost and resource utilization time. We propose a simulation-based cost model to predict the performance of jobs accurately. We achieve low-cost training by taking advantage of simulation framework, i.e., Monte Carlo (MC) simulation, which uses a small amount of data and resources to make a reliable prediction for larger datasets and clusters. The salient feature of our method is that it allows us to invest low training cost while obtaining an accurate prediction. Through experiments with six benchmark workloads, we demonstrate that the cost model yields less than 7% error on average prediction accuracy and the recommendation achieves up to 5x resource cost saving.

References

[1]
K. Binder. Monte carlo simulations in statistical physics. In Encyclopedia of Complexity and Systems Science, pages 5667--5677. Springer, 2009.
[2]
K. Chen, J. Powers, S. Guo, and F. Tian. CRESP: towards optimal resource provisioning for mapreduce computing in public clouds. IEEE Trans. Parallel Distrib. Syst., 25(6):1403--1412, 2014.
[3]
Y. Chen, X. Qin, H. Bian, J. Chen, Z. Dong, X. Du, Y. Gao, D. Liu, J. Lu, and H. Zhang. A study of sql-on-hadoop systems. In BPOE, pages 154--166, 2014.
[4]
A. Gounaris, G. Kougka, R. Tous, C. T. Montes, and J. Torres. Dynamic configuration of partitioning in spark applications. IEEE Trans. Parallel Distrib. Syst., 28(7):1891--1904, 2017.
[5]
Á. B. Hernández, M. S. Perez, S. Gupta, and V. Muntés-Mulero. Using machine learning to optimize parallelism in big data applications. Future Generation Computer Systems, 86:1076--1092, 2018.
[6]
S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench benchmark suite: Characterization of the mapreduce-based data analysis. In ICDE Workshops, pages 41--51. IEEE Computer Society, 2010.
[7]
D. J. Ketchen and C. L. Shook. The application of cluster analysis in strategic management research: an analysis and critique. Strategic management journal, 17(6):441--458, 1996.
[8]
J. Lu, Y. Chen, H. Herodotou, and S. Babu. Speedup your analytics: Automatic parameter tuning for databases and big data systems. PVLDB, 12(21):1970--1973, 2019.
[9]
J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang. Mrtuner: A toolkit to enable holistic optimization for mapreduce jobs. PVLDB, 7(13):1319--1330, 2014.
[10]
A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath. Automatic virtual machine configuration for database workloads. In SIGMOD Conference, pages 953--966. ACM, 2008.
[11]
S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica. Ernest: Efficient performance prediction for large-scale advanced analytics. In NSDI, pages 363--378. USENIX Association, 2016.
[12]
G. Wang, J. Xu, and B. He. A novel method for tuning configuration parameters of spark based on machine learning. In HPCC/SmartCity/DSS, pages 586--593. IEEE Computer Society, 2016.
[13]
K. Wang and M. M. H. Khan. Performance prediction for apache spark platform. In HPCC/CSS/ICESS, pages 166--173. IEEE, 2015.
[14]
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, pages 15--28. USENIX Association, 2012.

Cited By

View all
  • (2024)Intelligent Pooling: Proactive Resource Provisioning in Large-scale Cloud ServiceProceedings of the VLDB Endowment10.14778/3654621.365462917:7(1618-1627)Online publication date: 1-Mar-2024
  • (2024)TIE: Fast Experiment-Driven ML-Based Configuration Tuning for In-Memory Data AnalyticsIEEE Transactions on Computers10.1109/TC.2024.336593773:5(1233-1247)Online publication date: 14-Feb-2024
  • (2023)Towards General and Efficient Online Tuning for SparkProceedings of the VLDB Endowment10.14778/3611540.361154816:12(3570-3583)Online publication date: 12-Sep-2023
  • Show More Cited By

Index Terms

  1. Cost-effective Resource Provisioning for Spark Workloads

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CIKM '19: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
    November 2019
    3373 pages
    ISBN:9781450369763
    DOI:10.1145/3357384
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 November 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. cost model
    2. performance metrics
    3. resource provisioning
    4. simulation
    5. spark executor parameter

    Qualifiers

    • Short-paper

    Funding Sources

    • Huawei HIRP open project
    • Crowdsourced Battery Optimization AI for a Connected World (CBAI)
    • Academy of Finland

    Conference

    CIKM '19
    Sponsor:

    Acceptance Rates

    CIKM '19 Paper Acceptance Rate 202 of 1,031 submissions, 20%;
    Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 30 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Intelligent Pooling: Proactive Resource Provisioning in Large-scale Cloud ServiceProceedings of the VLDB Endowment10.14778/3654621.365462917:7(1618-1627)Online publication date: 1-Mar-2024
    • (2024)TIE: Fast Experiment-Driven ML-Based Configuration Tuning for In-Memory Data AnalyticsIEEE Transactions on Computers10.1109/TC.2024.336593773:5(1233-1247)Online publication date: 14-Feb-2024
    • (2023)Towards General and Efficient Online Tuning for SparkProceedings of the VLDB Endowment10.14778/3611540.361154816:12(3570-3583)Online publication date: 12-Sep-2023
    • (2023)SimCost: cost-effective resource provision prediction and recommendation for spark workloadsDistributed and Parallel Databases10.1007/s10619-023-07436-y42:1(73-102)Online publication date: 22-Jun-2023
    • (2022)LOCAT: Low-Overhead Online Configuration Auto-Tuning of Spark SQL ApplicationsProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3526157(674-684)Online publication date: 10-Jun-2022
    • (2022)A method of classification-based Spark job performance modeling2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2022)10.1117/12.2639399(220)Online publication date: 17-May-2022
    • (2022)Adaptive Code Learning for Spark Configuration Tuning2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00195(1995-2007)Online publication date: May-2022
    • (2022)Mjolnir: A framework agnostic auto-tuning system with deep reinforcement learningApplied Intelligence10.1007/s10489-022-03956-9Online publication date: 20-Oct-2022
    • (2020)AutoTokenProceedings of the VLDB Endowment10.14778/3415478.341555413:12(3326-3339)Online publication date: 14-Sep-2020
    • (2020)A Survey on Automatic Parameter Tuning for Big Data Processing SystemsACM Computing Surveys10.1145/338102753:2(1-37)Online publication date: 26-Apr-2020
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media