Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Accurate Rendering of Liquid-Crystals and Inhomogeneous Optically Anisotropic Media

Published: 03 May 2020 Publication History

Abstract

We present a novel method for devising a closed-form analytic expression to the light transport through the bulk of inhomogeneous optically anisotropic media. Those optically anisotropic materials, e.g., liquid-crystals and elastic fluids, arise in a plethora of established applications and exciting new research; however, current state-of-the-art methods of visually deducing their optical properties or rendering their appearance are either lacking or non-existent. We formulate our light transport problemunder the context of electromagnetism and derive, from first principles, a differential equation of the transmitted complex wave fields that fully account for the complicated interference phenomena that arise. At the core of our proposed rendering framework is a powerful mathematical representation, carefully crafted to enable us to produce highly accurate analytic approximative solutions for the light transport. This approach is previously unused in computer rendering, and our framework is capable of accurately rendering optically anisotropic materials with spatially varying optical properties at orders-of-magnitude better performance compared to existing methods. We demonstrate a few practical applications of our method, and we validate it against polarized photos of liquid-crystals as well as numerically against numerical solvers and qualitatively against brute-force renderings.

References

[1]
1972. I: Scalar Riccati differential equations. In Riccati Differential Equations, William T. Reid (Ed.). Mathematics in Science and Engineering, Vol. 86. Elsevier, 1--8.
[2]
995. Nematic Configurations within Droplets. World Scientific, 99--181.
[3]
S. M. Abrarov and B. M. Quine. 2011. Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation. Appl. Math. Comput. 218, 5 (Nov 2011), 1894--1902.
[4]
Sanjar M. Abrarov and Brendan M. Quine. 2018. A rational approximation of the Dawson’s integral for efficient computation of the complex error function. Appl. Math. Comput. 321 (Mar 2018), 526--543.
[5]
Guenter Ahlers, David S. Cannell, Lars Inge Berge, and Shinichi Sakurai. 1994. Thermal conductivity of the nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl. Phys. Rev. E 49, 1 (Jan 1994), 545--553.
[6]
Alireza Akbarzadeh and Aaron J. Danner. 2010. Generalization of ray tracing in a linear inhomogeneous anisotropic medium: a coordinate-free approach. J. Opt. Soc. Am. A 27, 12 (Dec 2010), 2558--2562.
[7]
Marco Ament, Christoph Bergmann, and Daniel Weiskopf. 2014. Refractive Radiative Transfer Equation. ACM Trans. Graph. 33, 2, Article 17 (April 2014), 22 pages.
[8]
Amir Nader Askarpour, Yang Zhao, and Andrea Alù. 2014. Wave propagation in twisted metamaterials. Phys. Rev. B 90, 5 (Aug 2014).
[9]
A. L. Aslanyan, L. S. Aslanyan, and Yu. S. Chilingaryan. 2015. On the Jones matrix method in a twisted anisotropic medium. Optics and Spectroscopy 119, 5 (1 Nov 2015), 869--874.
[10]
Seung-Hwan Baek, Diego Gutierrez, and Min H. Kim. 2016. Birefractive Stereo Imaging for Single-shot Depth Acquisition. ACM Trans. Graph. 35, 6, Article 194 (Nov 2016), 11 pages.
[11]
Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin. 2019. A Monte Carlo framework for rendering speckle statistics in scattering media. ACM Trans. Graph. 38, 4 (Jul 2019), 1--22.
[12]
Viswanath Bavigadda, Emilia Mihaylova, Raghavendra Jallapuram, and Vincent Toal. 2012. Vibration phase mapping using holographic optical element-based electronic speckle pattern interferometry. Opt. Lasers Eng. 50, 8 (Aug 2012), 1161--1167.
[13]
N. Bennis, I. Merta, A. Kalbarczyk, M. Maciejewski, P. Marc, A. Spadlo, and L. R. Jaroszewicz. 2017. Real time phase modulation measurements in liquid crystals. Opto-Electron. Rev. 25, 2 (Jun 2017), 69--73.
[14]
Lonny E. Berman, Michael Hart, and Sushil Sharma. 1992. Adaptive crystal optics for undulator beamlines. Nucl. Instrum. Methods Phys. Res., Sect. A 321, 3 (Oct 1992), 617--628.
[15]
Dwight W. Berreman. 1972. Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation. J. Opt. Soc. Am. 62, 4 (Apr 1972), 502--510.
[16]
F. Donald Bloss. 1961. An Introduction to the Methods of Optical Crystallography / F. Donald Bloss. Saunders College Philadelphia.
[17]
Vladimir G. Bodnar, Alexandr V. Koval’chuk, Oleg D. Lavrentovich, V. M. Pergamenshchik, and V. V. Sergan. 1991. Threshold of structural transition in nematic drops with normal boundary conditions in AC electric field. In Liquid-Crystal Devices and Materials, Paul S. Drzaic and Uzi Efron (Eds.). SPIE.
[18]
M. Born and E. Wolf. 1999. Principles of Optics. Cambridge University Press. 952 pages.
[19]
A. C. Callan-Jones, Robert A. Pelcovits, V. A. Slavin, S. Zhang, D. H. Laidlaw, and G. B. Loriot. 2006. Simulation and visualization of topological defects in nematic liquid crystals. Phys. Rev. E 74, 6 (Dec 2006), 061701.
[20]
Chen Cao, Zhong Ren, Baining Guo, and Kun Zhou. 2010. Interactive rendering of non-constant, refractive media using the ray equations of gradient-index optics. Comput. Graphics Forum 29, 4 (Aug 2010), 1375--1382.
[21]
Yankai Cao, Huaizhe Yu, Nicholas L. Abbott, and Victor M. Zavala. 2018. Machine learning algorithms for liquid crystal-based sensors. ACS Sensors 3, 11 (2018), 2237--2245. 30289249.
[22]
Charly Collin, Sumanta Pattanaik, Patrick LiKamWa, and Kadi Bouatouch. 2014. Computation of polarized subsurface BRDF for rendering. In Proceedings of Graphics Interface 2014 (GI’14). 201--208.
[23]
Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5 (Aug 2012), 1--11.
[24]
E. Ledezma-Sillas D. Tentori, C. Ayala-Díaz. 2008. Matrix model for a twisted medium: Liquid crystal cell.
[25]
P. G. de Gennes and J. Prost. 1993. The Physics of Liquid Crystals. Clarendon Press. https://books.google.com/books?id=0Nw-dzWz5agC.
[26]
Arnout De Meyere. 1994. Light propagation and color variations in liquid-crystal displays. J. Opt. Soc. Am. A 11, 2 (Feb 1994), 731.
[27]
Hideo Doi, Kazuaki Z. Takahashi, Kenji Tagashira, Jun-ichi Fukuda, and Takeshi Aoyagi. 2019. Machine learning-aided analysis for complex local structure of liquid crystal polymers. Sci. Rep. 9, 1 (Nov 2019).
[28]
Zhao Dong, Bruce Walter, Steve Marschner, and Donald P. Greenberg. 2015. Predicting Appearance from Measured Microgeometry of Metal Surfaces. ACM Trans. Graph. 35, 1 (2015), 9:1--9:13.
[29]
K. Eidner, G. Mayer, M. Schmidt, and H. Schmiedel. 1989. Optics in Stratified Media—The Use of Optical Eigenmodes of Uniaxial Crystals in the 4 × 4-Matrix Formalism. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 172, 1 (1989), 191--200.
[30]
M. Gantri. 2014. Solution of Radiative Transfer Equation with a Continuous and Stochastic Varying Refractive Index by Legendre Transform Method. Comput. Math. Methods Med. 2014 (2014), 1--7.
[31]
S. Gauza, C. H. Wen, B. Tan, Y. H. Wu, Y. H. Lin, and S. T. Wu. 2004. 46.1: UV-Stable High-Birefringence Low-Viscosity Isothiocyaniane Liquid Crystals and Application to 50-μsec Response Switching Device. SID Symp. Dig. Tech. Pap. 35, 1 (2004), 1304.
[32]
Yong Geng, JungHyun Noh, and Jan P. F. Lagerwall. 2016. Transmission polarized optical microscopy of short-pitch cholesteric liquid crystal shells. In Emerging Liquid Crystal Technologies XI, Liang-Chy Chien, Dick J. Broer, Hirotsugu Kikuchi, and Nelson V. Tabiryan (Eds.). SPIE, 71--80.
[33]
Thomas A. Germer, Katelynn A. Sharma, Thomas G. Brown, and James B. Oliver. 2017. Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film. J. Opt. Soc. Am. A 34, 11 (Nov 2017), 1974--1984.
[34]
A. Guerreiro, J. C. Costa, M. Gomes, R. A. Alves, and N. A. Silva. 2017. Physical ray-tracing method for anisotropic optical media in GPGPU. In Proceedings of the Third International Conference on Applications of Optics and Photonics, Manuel Filipe P. C. M. Martins Costa (Ed.). SPIE, 385--390.
[35]
Yubing Guo, Miao Jiang, Chenhui Peng, Kai Sun, Oleg Yaroshchuk, Oleg Lavrentovich, and Qi-Huo Wei. 2016. High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals. Advanced Materials 28, 12 (Jan 2016), 2353--2358.
[36]
Diego Gutierrez, Adolfo Munoz, Oscar Anson, and Francisco J. Seron. 2008. Non-linear volume photon mapping. In ACM SIGGRAPH ASIA 2008 Courses on - SIGGRAPH Asia ’08. ACM Press.
[37]
Ji-Huan He. 1999. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 3--4 (Aug 1999), 257--262.
[38]
M. Humar, M. Ravnik, S. Pajk, and I. Muševič. 2009. Electrically tunable liquid crystal optical microresonators. Nat. Photonics 3, 10 (Sep 2009), 595--600.
[39]
Wenzel Jakob, Eugene D’Eon, Otto Jakob, and Steve Marschner. 2014. A Comprehensive Framework for Rendering Layered Materials. ACM Trans. Graph. (Proceedings of SIGGRAPH) 33, 4 (July 2014), 118:1--118:14.
[40]
Adrian Jarabo and Victor Arellano. 2018. Bidirectional Rendering of Vector Light Transport. Comput. Graph. Forum 37, 6 (2018), 96--105.
[41]
Masaki Kanke and Kazuo Sasaki. 2013. Equilibrium configuration in a nematic liquid crystal droplet with homeotropic anchoring of finite strength. J. Phys. Soc. Jpn. 82, 9 (Sep 2013), 94605.
[42]
Charalambos C. Katsidis and Dimitrios I. Siapkas. 2002. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41, 19 (Jul 2002), 3978--3987.
[43]
S. Kaur, Y.-J. Kim, H. Milton, D. Mistry, I. M. Syed, J. Bailey, K. S. Novoselov, J. C. Jones, P. B. Morgan, J. Clamp, and et al. 2016. Graphene electrodes for adaptive liquid crystal contact lenses. Opt. Express 24, 8 (Apr 2016), 8782.
[44]
Yasaman Kiasat, Zsolt Szabo, Xudong Chen, and Erping Li. 2014. Light interaction with multilayer arbitrary anisotropic structure: An explicit analytical solution and application for subwavelength imaging. J. Opt. Soc. Am. B 31, 3 (Mar 2014), 648--655.
[45]
Mingyun Kim, Kyun Joo Park, Seunghwan Seok, Jong Min Ok, Hee-Tae Jung, Jaehoon Choe, and Do Hyun Kim. 2015. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Appl. Mater. Interfaces 7, 32 (Aug 2015), 17904--17909.
[46]
V. R. Kocharyan, A. S. Gogolev, A. E. Movsisyan, A. H. Beybutyan, S. G. Khlopuzyan, and L. R. Aloyan. 2015. X-ray diffraction method for determination of interplanar spacing and temperature distribution in crystals under an external temperature gradient. J. Appl. Crystallogr. 48, 3 (May 2015), 853--856.
[47]
I. S. Kolomiets. 2013. Studying anisotropic properties of longitudinal inhomogeneous nondepolarizing media with elliptical phase anisotropy. Semicond. Phys. Quantum Electron. Optoelectron. 16, 4 (Dec 2013), 366--373.
[48]
Yu. A. Kravtsov, B. Bieg, and K. Yu. Bliokh. 2007. Stokes-vector evolution in a weakly anisotropic inhomogeneous medium. J. Opt. Soc. Am. A 24, 10 (Sep 2007), 3388.
[49]
Pedro Latorre, Francisco J. Seron, and Diego Gutierrez. 2012. Birefringence: Calculation of refracted ray paths in biaxial crystals. Visual Comput. 28, 4 (1 Apr 2012), 341--356.
[50]
Mon-Juan Lee, Chi-Hao Lin, and Wei Lee. 2015. Liquid-crystal-based biosensing beyond texture observations. In Liquid Crystals XIX, Iam Choon Khoo (Ed.). SPIE, 109--115.
[51]
J. Lekner. 1991. Reflection and refraction by uniaxial crystals. J. Phys. Condens. Matter 3 (Aug. 1991), 6121--6133.
[52]
Anat Levin, Daniel Glasner, Ying Xiong, Fredo Durand, Bill Freeman, Wojciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Trans. Graph. 32, 4 (2013), 14 pages.
[53]
J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu. 2005. Refractive indices of liquid crystals for display applications. J. Disp. Technol. 1, 1 (Sep 2005), 51--61.
[54]
Teresa Lopez-Leon and Alberto Fernandez-Nieves. 2011. Drops and shells of liquid crystal. Colloid Polym. Sci. 289, 4 (Jan 2011), 345--359.
[55]
Jens G. Magnus and Stefan Bruckner. 2018. Interactive dynamic volume illumination with refraction and caustics. IEEE Trans. Visualization Comput. Graph. 24, 1 (Jan 2018), 984--993.
[56]
Wilhelm Magnus. 1954. On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 4 (1954), 649--673.
[57]
L. Mandel and E. Wolf. 1995. Optical Coherence and Quantum Optics. 1192 pages.
[58]
Heylal Mashaal, Alex Goldstein, Daniel Feuermann, and Jeffrey M. Gordon. 2012. First direct measurement of the spatial coherence of sunlight. Opt. Lett. 37, 17 (Sep 2012), 3516--3518.
[59]
Michal Mojzík, Tomáš Skřìvan, Alexander Wilkie, and Jaroslav Křivánek. 2016. Bi-directional polarised light transport. In Eurographics Symposium on Rendering—Experimental Ideas 8 Implementations, Elmar Eisemann and Eugene Fiume (Eds.).
[60]
Yohei Nishidate. 2013. Closed-form analytical solutions for ray tracing in optically anisotropic inhomogeneous media. J. Opt. Soc. Am. A 30, 7 (Jul 2013), 1373--1379.
[61]
Akifumi Ogiwara, Hiroshi Kakiuchida, Masato Tazawa, and Hiroshi Ono. 2007. Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal. Jpn. J. Appl. Phys. 46, 11 (Nov 2007), 7341--7346.
[62]
J. K. Patel and C. B. Read. 1996. Handbook of the Normal Distribution, Second Edition. Taylor 8 Francis. https://books.google.se/books?id=zoVLF0VF9UYC
[63]
Vincent Pegoraro and Steven G. Parker. 2006. Physically-based realistic fire rendering. In Proceedings of the 2nd Eurographics Conference on Natural Phenomena (NPH’06). Eurographics Association, Goslar, Germany, 51--59.
[64]
Kamil Postava, Tomuo Yamaguchi, and Roman Kantor. 2002. Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures. Appl. Opt. 41, 13 (May 2002), 2521--2531.
[65]
Scott A. Prahl. 1995. The Adding-Doubling Method. Springer US, Boston, MA, 101--129.
[66]
O. O. Prishchepa, V. Ya. Zyryanov, A. P. Gardymova, and V. F. Shabanov. 2008. Optical textures and orientational structures of nematic and cholesteric droplets with heterogeneous boundary conditions. Mol. Cryst. Liq. Cryst. 489, 1 (Sep 2008), 84/[410]--93/[419].
[67]
I. Ricardez-Vargas and K. Volke-Sepúlveda. 2010. Experimental generation and dynamical reconfiguration of different circular optical lattices for applications in atom trapping. J. Opt. Soc. Am. B: Opt. Phys. 27, 5 (Apr 2010), 948.
[68]
Michael Shribak. 2011. Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution. J. Opt. Soc. Am. A 28, 3 (Mar 2011), 410--419.
[69]
Michael Shribak and Rudolf Oldenbourg. 2003. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 42, 16 (Jun 2003), 3009--3017.
[70]
G. V. Simonenko. 2010. Modelling the optical responses of electrooptic effects of liquid-crystal cells. J. Opt. Technol. 77, 2 (Feb 2010), 93.
[71]
Maarten Sluijter, Dick K. de Boer, and H. Paul Urbach. 2009. Ray-optics analysis of inhomogeneous biaxially anisotropic media. J. Opt. Soc. Am. A 26, 2 (Feb 2009), 317--329.
[72]
Maarten Sluijter, Dick K. G. de Boer, and Joseph J. M. Braat. 2008. General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media. J. Opt. Soc. Am. A 25, 6 (Jun 2008), 1260--1273.
[73]
Alexander Smith, Nicholas L. Abbott, and Victor M. Zavala. 2020. Convolutional network analysis of optical micrographs. (1 2020).
[74]
S. Stallinga. 1999. Berreman 4X4 matrix method for reflective liquid crystal displays. J. Appl. Phys. 85, 6 (1999), 3023--3031.
[75]
Jos Stam and Eric Languénou. 1996. Ray Tracing in Non-Constant Media. In Rendering Techniques ’96, Xavier Pueyo and Peter Schröder (Eds.). Springer, Vienna, 225--234.
[76]
Holger Stark. 2001. Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351, 6 (Oct 2001), 387--474.
[77]
S. Steinberg. 2019. Analytic spectral integration of birefringence-induced iridescence. Comput. Graph. Forum 38, 4 (Jul 2019), 97--110.
[78]
Kevin G. Suffern and Phillip H. Getto. 1991. Ray tracing gradient index lenses. In Scientific Visualization of Physical Phenomena, Nicholas M. Patrikalakis (Ed.). Springer Japan, Tokyo, 317--331.
[79]
Xin Sun, Kun Zhou, Eric Stollnitz, Jiaoying Shi, and Baining Guo. 2008. Interactive relighting of dynamic refractive objects. In ACM SIGGRAPH 2008 Papers on—SIGGRAPH’08. ACM Press.
[80]
David C. Tannenbaum, Peter Tannenbaum, and Michael J. Wozny. 1994. Polarization and birefringency considerations in rendering. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’94). 221--222.
[81]
Volodymyr Tkachenko, Giancarlo Abbate, Antigone Marino, Francesco Vita, Michele Giocondo, Alfredo Mazzulla, Federica Ciuchi, and Luca De Stefano. 2006. Nematic liquid crystal optical dispersion in the visible-near infrared range. Mol. Cryst. Liq. Cryst. 454, 1 (Sep 2006), 263/[665]--271/[673].
[82]
Antoine Toisoul and Abhijeet Ghosh. 2017. Practical acquisition and rendering of diffraction effects in surface reflectance. ACM Trans. Graph. 36, 5 (Jul 2017), 1--16.
[83]
Michael Walters, Qianshi Wei, and Jeff Z. Y. Chen. 2019. Machine learning topological defects of confined liquid crystals in two dimensions. Phys. Rev. E 99 (Jun 2019), 062701. Issue 6.
[84]
J. Wei and E. Norman. 1964. On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15, 2 (1964), 327--334.
[85]
Andrea Weidlich and Alexander Wilkie. 2008. Realistic rendering of birefringency in uniaxial crystals. ACM Trans. Graph. 27, 1, Article 6 (March 2008), 12 pages.
[86]
Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias Hullin. 2017. Scratch iridescence: Wave-optical rendering of diffractive surface structure. Trans. Graph. (Proceedings of SIGGRAPH Asia) 36, 6 (Nov 2017).
[87]
R. M. Wilcox. 1967. Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 4 (1967), 962--982.
[88]
Yue Wu and Ji-Huan He. 2018. Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass. Results Phys. 10 (Sep 2018), 270--271.
[89]
Yunlong Wu, Jinsong Nie, and Li Shao. 2016. Method to measure the phase modulation characteristics of a liquid crystal spatial light modulator. Appl. Opt. 55, 31 (Oct 2016), 8676.
[90]
Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering specular microgeometry with wave optics. ACM Trans. Graph. 37, 4, Article 75 (July 2018), 10 pages.
[91]
Amnon Yariv and Pochi Yeh. 2003. Optical Waves in Crystals: Propagation and Control of Laser Radiation. Hoboken, N.J.: John Wiley and Sons.
[92]
Pochi Yeh. 1982. Extended Jones matrix method. J. Opt. Soc. Am. 72, 4 (Apr 1982), 507--513.
[93]
S.-H. Youn, B.-J. Mun, J. H. Lee, B. K. Kim, H. C. Choi, S. H. Lee, B. Kang, and G.-D. Lee. 2014. Multidimensional calculation of ray path in a twisted nematic liquid crystal cell. J. Mod. Opt. 61 (Feb 2014), 257--262.
[94]
Dmitry Zhdanov, Sergey Ershov, Leo Shapiro, Vadim Sokolov, Alexey Voloboy, Vladimir Galaktionov, and Igor Potemin. 2019. Realistic rendering of scenes with anisotropic media. Opt. Eng. 58, 8 (2019), 1--11--11.
[95]
Simon Äopar, Tine Porenta, and Slobodan Žumer. 2013. Visualisation methods for complex nematic fields. Liq. Cryst. 40, 12 (2013), 1759--1768.

Cited By

View all
  • (2024)Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsionsNature Communications10.1038/s41467-024-45674-515:1Online publication date: 15-Feb-2024
  • (2024)LCPOM: Precise Reconstruction of Polarized Optical Microscopy Images of Liquid CrystalsChemistry of Materials10.1021/acs.chemmater.3c0242536:7(3081-3091)Online publication date: 28-Mar-2024
  • (2024)Unifying radiative transfer models in computer graphics and remote sensing, Part I: A surveyJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2023.108847314(108847)Online publication date: Feb-2024
  • Show More Cited By

Index Terms

  1. Accurate Rendering of Liquid-Crystals and Inhomogeneous Optically Anisotropic Media

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 39, Issue 3
      June 2020
      179 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3388953
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 03 May 2020
      Accepted: 01 February 2020
      Revised: 01 February 2020
      Received: 01 November 2019
      Published in TOG Volume 39, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Wave optics
      2. light transport
      3. physical and mathematical representation
      4. polarized imaging

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)202
      • Downloads (Last 6 weeks)33
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsionsNature Communications10.1038/s41467-024-45674-515:1Online publication date: 15-Feb-2024
      • (2024)LCPOM: Precise Reconstruction of Polarized Optical Microscopy Images of Liquid CrystalsChemistry of Materials10.1021/acs.chemmater.3c0242536:7(3081-3091)Online publication date: 28-Mar-2024
      • (2024)Unifying radiative transfer models in computer graphics and remote sensing, Part I: A surveyJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2023.108847314(108847)Online publication date: Feb-2024
      • (2022)Towards practical physical-optics renderingACM Transactions on Graphics10.1145/3528223.353011941:4(1-24)Online publication date: 22-Jul-2022
      • (2021)Physical light-matter interaction in hermite-gauss spaceACM Transactions on Graphics10.1145/3478513.348053040:6(1-17)Online publication date: 10-Dec-2021
      • (2021)A generic framework for physical light transportACM Transactions on Graphics10.1145/3476576.347671540:4(1-20)Online publication date: Aug-2021
      • (2021)A generic framework for physical light transportACM Transactions on Graphics10.1145/3450626.345979140:4(1-20)Online publication date: 19-Jul-2021
      • (2020)Path tracing estimators for refractive radiative transferACM Transactions on Graphics10.1145/3414685.341779339:6(1-15)Online publication date: 27-Nov-2020

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Get Access

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media