Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3452296.3472890acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

LAVA: fine-grained 3D indoor wireless coverage for small IoT devices

Published: 09 August 2021 Publication History

Abstract

Small IoT devices deployed in challenging locations suffer from uneven 3D coverage in complex environments. This work optimizes indoor coverage with LAVA, a Large Array of Vanilla Amplifiers. LAVA is a standard-agnostic cooperative mesh of elements, i.e., RF devices each consisting of several switched input and output antennas connected to fixed-gain amplifiers. Each LAVA element is further equipped with rudimentary power sensing to detect nearby transmissions. The elements report power readings to the LAVA control plane, which then infers active link sessions without explicitly interacting with the endpoint transmitter or receiver. With simple on-off control of amplifiers and antenna switching, LAVA boosts passing signals via multi hop amplify-and-forward. LAVA explores a middle ground between smart surfaces and physical-layer relays. Multi-hopping over short inter-hop distances exerts more control over the end-to-end trajectory, supporting fine-grained coverage and spatial reuse. Ceiling testbed results show throughput improvements to individual Wi-Fi links by 50% on average and up to 100% at 15 dBm transmit power (193% on average, up to 8x at 0 dBm). ZigBee links see up to 17 dB power gain. For pairs of co-channel concurrent links, LAVA provides average per-link throughput improvements of 517% at 0 dBm and 80% at 15 dBm.

Supplementary Material

nandakumar-public-review (24-public-review.pdf)
LAVA: Fine-grained 3D indoor wireless coverage for small IoT devices: Public Review
MP4 File (video-presentation.mp4)
Conference Presentation Video
MP4 File (video-long.mp4)
Long Version Video

References

[1]
O. Abari, D. Bharadia, A. Duffield, D. Katabi. Cutting the Cord in Virtual Reality. Proceedings of ACM HotNets, 2016.
[2]
O. Abari, D. Bharadia, A. Duffield, D. Katabi. Enabling High-quality Untethered Virtual Reality. Proceedings of USENIX NSDI, 2017.
[3]
F. Adib, S. Kumar, O. Aryan, S. Gollakota, D. Katabi. Interference Alignment by Motion. Proceedings of ACM MobiCom, 2013.
[4]
V. Arun, H. Balakrishnan. RFocus: Practical Beamforming for Small Devices. Proceedings of USENIX NSDI, 2020.
[5]
Taoglas 2.4GHz Bandpass Filter. https://www.digikey.com/product-detail/en/taoglas-limited/BPF.24.01/931-1467-ND/6362804.
[6]
E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, R. Zhang. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access, 7, 2019.
[7]
D. Bharadia, S. Katti. FastForward: Fast and Constructive Full Duplex Relays. Proceedings of ACM SIGCOMM, 2014.
[8]
E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, T. L. Marzetta. Massive MIMO is a reality---What is next?: Five promising research directions for antenna arrays. Digital Signal Processing, 94, 2019.
[9]
S. M. Bowers, A. Safaripour, A. Hajimiri. Dynamic polarization control. IEEE Journal of Solid-State Circuits, 50(5), 2015.
[10]
X. Cao, B. Yang, H. Zhang, C. Huang, C. Yuen, Z. Han. Reconfigurable intelligent surface-assisted MAC for wireless networks: Protocol design, analysis, and optimization. IEEE Internet of Things Journal, 2021.
[11]
C. J. Carver, Z. Tian, H. Zhang, K. M. Odame, A. Q. Li, X. Zhou. AmphiLight: Direct air-water communication with laser light. Proceedings of USENIX NSDI, 2020.
[12]
J. Chan, A. Wang, V. Iyer, S. Gollakota. Surface MIMO: Using Conductive Surfaces For MIMO Between Small Devices. Proceedings of ACM MobiCom, 2018.
[13]
J. Chan, C. Zheng, X. Zhou. 3D Printing Your Wireless Coverage. Proceedings of ACM HotWireless Workshop, 2015.
[14]
L. Chen, W. Hu, K. Jamieson, X. Chen, D. Fang, J. Gummeson. Pushing the Physical Limits of IoT Devices with Programmable Metasurfaces. Proceedings of USENIX NSDI, 2021.
[15]
K. W. Cho, M. H. Mazaheri, J. Gummeson, O. Abari, K. Jamieson. mmWall: A Reconfigurable Metamaterial Surface for mmWave Networks. Proceedings of ACM HotMobile Workshop, 2021.
[16]
B. Di, H. Zhang, L. Song, Y. Li, Z. Han, H. V. Poor. Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts. IEEE Journal on Selected Areas in Communications, 38(8), 1809--1822, 2020.
[17]
M. Dunna, C. Zhang, D. Sievenpiper, D. Bharadia. ScatterMIMO: Enabling virtual MIMO with smart surfaces. Proceedings of ACM MobiCom, 2020.
[18]
SunFounder Ethernet Shield W5100. https://www.sunfounder.com/ethernet-shield-w5100-for-arduino.html.
[19]
NETGEAR N300 Wi-Fi Range Extender. https://www.netgear.com/home/products/networking/wifi-range-extenders/WN3000RP.aspx.
[20]
R. Fara, P. Ratajczak, D.-T. P. Huy, A. Ourir, M. Di Renzo, J. De Rosny. A Prototype of Reconfigurable Intelligent Surface with Continuous Control of the Reflection Phase. arXiv preprint arXiv:2105.11862, 2021.
[21]
Blue Sea Systems Blade Fuse Block. https://www.bluesea.com/products/5029/ST_Blade_Fuse_Block_-_12_Circuits_with_Cover.
[22]
The Future of IoT and the Digital Workplace. https://www.cmswire.com/digital-workplace/the-future-of-iot-and-the-digital-workplace/.
[23]
R. Ghaffarivardavagh, S. S. Afzal, O. Rodriguez, F. Adib. Underwater Backscatter Localization: Toward a Battery-Free Underwater GPS. Proceedings of ACM HotNets, 2020.
[24]
S. Gollakota, F. Adib, D. Katabi, S. Seshan. Clearing the RF smog: making 802.11n robust to cross-technology interference. Proceedings of the ACM SIGCOMM, 2011.
[25]
H. Guo, Y.-C. Liang, J. Chen, E. G. Larsson. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Transactions on Wireless Communications, 19(5), 3064--3076, 2020.
[26]
S. Han, K. Shin. Enhancing Wireless Performance Using Reflectors. Proceedings of IEEE INFOCOM, 2017.
[27]
Y. Hauri, D. Bhattacherjee, M. Grossmann, A. Singla. "Internet from Space" without Inter-Satellite Links. Proceedings of ACM HotNets, 2020.
[28]
P. del Hougne, M. Fink, G. Lerosey. Optimally diverse communication channels in disordered environments with tuned randomness. Nature Electronics, 2(1), 36--41, 2019.
[29]
K.-C. Hsu, K. C.-J. Lin, H.-Y. Wei. Full-duplex Delay-and-forward Relaying. Proceedings of ACM MobiHoc, 2016.
[30]
C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo, M. Debbah. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wireless Communications, 27(5), 118--125, 2020.
[31]
C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, C. Yuen. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157--4170, 2019.
[32]
Healthy living with IoT. https://www.iotforall.com/healthy-living-with-iot-ces.
[33]
Five Emerging IoT Trends for 2021. https://www.forbes.com/sites/theyec/2021/12/28/five-emerging-internet-of-things-trends-for-2021/?sh=6a96fb40205d.
[34]
S. A. Jafar, M. J. Fakhereddin. Degrees of freedom for the MIMO interference channel. IEEE Transactions on Information Theory, 53(7), 2007.
[35]
J. Jang, F. Adib. Underwater backscatter networking. Proceedings of ACM SIGCOMM, 2019.
[36]
G. R. Keiser, N. Karl, S. R. U. Haque, I. Brener, D. M. Mittleman, R. D. Averitt. Structurally Tunable Nonlinear Terahertz Metamaterials using Broadside Coupled Split Ring Resonators. arXiv preprint arXiv:2104.05757, 2021.
[37]
Z. Li, Y. Xie, L. Shangguan, R. I. Zelaya, J. Gummeson, W. Hu, K. Jamieson. Programmable Radio Environments with Large Arrays of Inexpensive Antennas. GetMobile: Mobile Computing and Communications, 23(3), 23--27, 2019.
[38]
Z. Li, Y. Xie, L. Shangguan, R. I. Zelaya, J. Gummeson, W. Hu, K. Jamieson. Towards Programming the Radio Environment with Large Arrays of Inexpensive Antennas. Proceedings of USENIX NSDI, 2019.
[39]
C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. Akyildiz. A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Communications Magazine, 56(9), 2018.
[40]
C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. Akyildiz. Realizing wireless communication through software-defined hypersurface environments. Proceedings of IEEE WoWMoM, 2018.
[41]
X. Liu, Y. Liu, Y. Chen, H. V. Poor. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design. IEEE Journal on Selected Areas in Communications, 39(4), 1057--1071, 2020.
[42]
X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, P. Steenkiste. DIRC: Increasing Indoor Wireless Capacity Using Directional Antennas. Proceedings of ACM SIGCOMM, 2009.
[43]
Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, N. Al-Dhahir. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Communications Surveys & Tutorials, 2021.
[44]
Logarithmic Detector AD8318. https://www.analog.com/media/en/technical-documentation/data-sheets/AD8318.pdf.
[45]
A. Miu, H. Balakrishnan, C. E. Koksal. Improving Loss Resilience with Multi-radio Diversity in Wireless Networks. Proceedings of ACM MobiCom, 2005.
[46]
R. Murty, J. Padhye, R. Chandra, A. Wolman, B. Zill. Designing High Performance Enterprise Wi-Fi Networks. Proceedings of USENIX NSDI, 2008.
[47]
S. Narayana, R. V. Prasad, T. Prabhakar. SOS: Isolated health monitoring system to save our satellites. Proceedings of ACM MobiSys, 2021.
[48]
S. Narayana, R. Venkatesha Prasad, V. S. Rao, L. Mottola, T. Venkata Prabhakar. A Hummingbird in Space: An energy-efficient GPS receiver for small satellites. GetMobile: Mobile Computing and Communications, 25(1), 2021.
[49]
Scalable and Ultra-Low Power Ocean IoT. https://www.media.mit.edu/projects/ultra-wideband-underwater-backscatter-via-piezoelectric-metamaterials/overview/.
[50]
M. Okatan, J. Mantese, S. Alpay. Polarization coupling in ferroelectric multilayers. Physical Review B, 79(17), 2009.
[51]
Alpha Network Antenna APA-M25. https://www.alfa.com.tw/products_detail/234.htm.
[52]
Macom Digital Phase Shifter MAPS-010164. https://www.macom.com/products/product-detail/MAPS-010164.
[53]
H. Rahul, H. Hassanieh, D. Katabi. SourceSync: A Distributed Wireless Architecture for Exploiting Sender Diversity. Proceedings of ACM SIGCOMM, 2010.
[54]
M. D. Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin, J. de Rosny, A. Bounceur, G. Lerosey, M. Fink. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP Journal on Wireless Communications and Networking volume, 2019.
[55]
A. Sheth, S. Seshan, D. Wetherall. Geofencing: Confining 802.11 coverage areas to physical boundaries. Proceedings of Pervasive, 2009.
[56]
Texas Instruments 8-Bit Shift Register. http://www.ti.com/lit/ds/symlink/sn74hc595.pdf.
[57]
V. Singh, A. Prabhakara, D. Zhang, O. Yağan, S. Kumar. A community-driven approach to democratize access to satellite ground stations. Proceedings of ACM MobiCom, 2021.
[58]
Smart hospital. https://www.techrepublic.com/article/new-smart-hospital-platform-could-be-the-digital-transformation-tool-healthcare-needs/.
[59]
Skyworks SP4T Switch SKY13414-485LF. https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/701-800/SKY13414_485LF_201689J.pdf.
[60]
Analog Devices SP8T Switch HMC321ALP4E. https://www.analog.com/media/en/technical-documentation/data-sheets/hmc321a.pdf.
[61]
Ho IoT in Space is Taking Off. https://www.iottechexpo.com/2019/12/iot/iot-in-space/.
[62]
F. Tonolini, F. Adib. Networking across boundaries: Enabling wireless communication through the water-air interface. Proceedings of ACM SIGCOMM, 2018.
[63]
Linksys - AC750 Boost Range Extender. http://www.linksys.com/us/p/P-RE6300/.
[64]
TP-Link RE450 1750 Wi-Fi Range Extender. https://www.tp-link.com/us/products/details/cat-5508_RE450.html.
[65]
Toshiba DMOS Transistor Array. https://www.digikey.com/product-detail/en/toshiba-semiconductor-and-storage/TBD62781APG/TBD62781APG-ND/8570316.
[66]
S. Venkatesh, X. Lu, H. Saeidi, K. Sengupta. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nature Electronics, 3(12), 785--793, 2020.
[67]
A. Welkie, L. Shangguan, J. Gummeson, W. Hu, K. Jamieson. Programmable Radio Environments for Smart Spaces. Proceedings of ACM HotNets, 2017.
[68]
What is the Internet of Things. https://www.scientificamerican.com/article/what-is-the-internet-of-things/.
[69]
G. Woo, P. Kheradpour, D. Shen, D. Katabi. Beyond the bits: Cooperative packet recovery using physical layer information. Proceedings of ACM MobiCom, 2007.
[70]
Q. Wu, R. Zhang. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Communications Magazine, 58(1), 2020.
[71]
J. Xiong, K. Sundaresan, K. Jamieson, M. A. Khojastepour, S. Rangarajan. MIDAS: Empowering 802.11ac Networks with Multiple-Input Distributed Antenna Systems. Proceedings of ACM CoNEXT, 2014.
[72]
X. Xiong, J. Chan, E. Yu, N. Kumari, A. A. Sani, C. Zheng, X. Zhou. Customizing indoor wireless coverage via 3D-fabricated reflectors. Proceedings of ACM BuildSys Workshop, 2017.
[73]
Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, Y. Zhang. BigStation: Enabling Scalable Real-time Signal Processing in Large MU-MIMO systems. Proceedings of ACM SIGCOMM, 2013.
[74]
I. Yoo, M. F. Imani, T. Sleasman, H. D. Pfister, D. R. Smith. Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Transactions on Communications, 67(2), 1070--1084, 2018.
[75]
Q. Zhang, Y.-C. Liang, H. V. Poor. Large Intelligent Surface/Antennas (LISA) Assisted Symbiotic Radio for IoT Communications, 2020.
[76]
X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Zhao, H. Zheng. Mirror Mirror on the Ceiling: Flexible Wireless Links for Data Centers. Proceedings of ACM SIGCOMM, 2012.
[77]
H. Zhu, J. Wang. Radio Resource Allocation in Multiuser Distributed Antenna Systems. IEEE JSAC, 2013.

Cited By

View all
  • (2025)Passive Metasurface-Based Low Earth Orbit Ground Station DesignTsinghua Science and Technology10.26599/TST.2023.901015730:1(148-160)Online publication date: Feb-2025
  • (2025)DAiMo: Motif Density Enhances Topology Robustness for Highly Dynamic Scale-Free IoTIEEE Transactions on Mobile Computing10.1109/TMC.2024.349200224:3(2360-2375)Online publication date: Mar-2025
  • (2024)SurfOS: Towards an Operating System for Programmable Radio EnvironmentsProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696861(132-141)Online publication date: 18-Nov-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGCOMM '21: Proceedings of the 2021 ACM SIGCOMM 2021 Conference
August 2021
868 pages
ISBN:9781450383837
DOI:10.1145/3452296
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 August 2021

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. multi-hop amplify-and-forward
  2. non-uniform 3D coverage
  3. programmable radio environments
  4. smart surfaces

Qualifiers

  • Research-article

Funding Sources

Conference

SIGCOMM '21
Sponsor:
SIGCOMM '21: ACM SIGCOMM 2021 Conference
August 23 - 27, 2021
Virtual Event, USA

Acceptance Rates

Overall Acceptance Rate 462 of 3,389 submissions, 14%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)484
  • Downloads (Last 6 weeks)31
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Passive Metasurface-Based Low Earth Orbit Ground Station DesignTsinghua Science and Technology10.26599/TST.2023.901015730:1(148-160)Online publication date: Feb-2025
  • (2025)DAiMo: Motif Density Enhances Topology Robustness for Highly Dynamic Scale-Free IoTIEEE Transactions on Mobile Computing10.1109/TMC.2024.349200224:3(2360-2375)Online publication date: Mar-2025
  • (2024)SurfOS: Towards an Operating System for Programmable Radio EnvironmentsProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696861(132-141)Online publication date: 18-Nov-2024
  • (2024)Finding Globally Optimal Configuration of Active RIS in Linear TimeIEEE Transactions on Wireless Communications10.1109/TWC.2024.346230723:12(18142-18153)Online publication date: Dec-2024
  • (2022)A Non-Line-of-Sight Wireless Indoor Localization System Using Custom-Designed Radio Relay and Uniform Circular ArrayIEEE Transactions on Antennas and Propagation10.1109/TAP.2022.319122270:11(11045-11058)Online publication date: Nov-2022

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media