Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Faster Quantum-inspired Algorithms for Solving Linear Systems

Published: 07 July 2022 Publication History

Abstract

We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \(A{\bf x}= {\bf b}\), we show that there is a classical algorithm that outputs a data structure for \({\bf x}\) allowing sampling and querying to the entries, where \({\bf x}\) is such that \(\Vert {\bf x}- A^{+}{\bf b}\Vert \le \epsilon \Vert A^{+}{\bf b}\Vert\). This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \(\widetilde{O}(\kappa _F^6 \kappa ^2/\epsilon ^2)\), where \(\kappa _F = \Vert A\Vert _F\Vert A^{+}\Vert\) and \(\kappa = \Vert A\Vert \Vert A^{+}\Vert\). This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \(\widetilde{O}(\kappa _F^6 \kappa ^6/\epsilon ^4)\). Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \({\bf x}\) in time \(\widetilde{O}(\kappa _F^2)\), while the best quantum algorithm known returns \(| {\bf x} \rangle\) in time \(\widetilde{O}(\kappa _F)\) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.
Appendices

A Estimation of \(\phi\)

Using the notation (14), we can decompose the updating rule (13) of \({\bf y}\) as follows:
\begin{equation} {\bf y}_{k+1} = {\bf y}_k + {\bf z}_k + {\bf z}_k^{\prime }, \end{equation}
(26)
where
\[\begin{eqnarray*} {\bf z}_k = \frac{\tilde{b}_{r_k} - \langle \tilde{A}_{r_k*} | A^T| {\bf y}_{k} \rangle }{\Vert A_{r_k*}\Vert } {\bf e}_{r_k}, \quad {\bf z}_k^{\prime } = \frac{\mu _k}{\Vert A_{r_k*}\Vert } {\bf e}_{r_k}. \end{eqnarray*}\]
Denote
\begin{equation} Z = \Vert A{\bf x}_* - {\bf b}\Vert = \min _{{\bf x}} \Vert A{\bf x}- {\bf b}\Vert , \quad \Lambda = {\rm diag} (\Vert A_{i*}\Vert ^2: i \in [m]). \end{equation}
(27)
In the following, for any two vectors \({\bf a},{\bf b}\), we define \(\langle {\bf a}|{\bf b}\rangle _{\Lambda } = \langle {\bf a}|\Lambda |{\bf b}\rangle\). To bound \(\phi\), it suffices to bound \(\Vert {\bf y}_T\Vert _\Lambda ^2\). From Equation (26), it is plausible that \(\Vert {\bf y}_{k+1}\Vert _\Lambda ^2 = \Theta (\Vert {\bf y}_{k}\Vert _\Lambda ^2 + \Vert {\bf z}_{k}\Vert _\Lambda ^2 + \Vert {\bf z}_{k}^{\prime }\Vert _\Lambda ^2)\). In the following, we shall prove that in fact this holds up to a constant factor on average. We shall choose the initial vector as 0 for simplicity, i.e., \({\bf y}_0=0\).
First, we consider the case \(Z = 0\), that is \({\bf b}= A{\bf x}_*\). In the following, we first fix \(k,r_k\) and compute the mean value over the random variable D, then we compute the mean value over \(r_k\) by fixing k. Finally, we calculate the mean value over the random variable k.
From now on, we assume that \(d = \frac{4\Vert A\Vert _F^2 T}{\epsilon ^{2} \min _{j \in [n]} \Vert A_{*j}\Vert ^2}\) and \(T=O(\kappa _F^2\log (1/\epsilon))\). By Lemma 9,
\[\begin{eqnarray*} {\mathbb {E}}_D[\Vert {\bf z}_k^{\prime }\Vert _\Lambda ^2] &\le & \frac{\Vert A\Vert _F^2 \Vert {\bf x}_k\Vert ^2}{d\min _{j \in [n]} \Vert A_{*j}\Vert ^2} = \frac{\epsilon ^2\Vert {\bf x}_k\Vert ^2}{4T} \le \frac{\epsilon ^2(\Vert {\bf x}_k-{\bf x}_*\Vert ^2+\Vert {\bf x}_*\Vert ^2)}{2T}, \\ {\mathbb {E}}_D[\langle {\bf z}_k|{\bf z}_k^{\prime }\rangle _\Lambda ] &=& \left(\tilde{b}_{r_k} - \langle \tilde{A}_{r_k*}|{\bf x}_k\rangle \right) {\mathbb {E}}_D[\mu _k] = 0, \\ {\mathbb {E}}_D[\langle {\bf y}_k|{\bf z}_k^{\prime }\rangle _\Lambda ] &=& \Vert A_{r_k*}\Vert \langle {\bf y}_k|{\bf e}_{r_k}\rangle {\mathbb {E}}_D[\mu _k] = 0. \end{eqnarray*}\]
About the norm of \({\bf z}_k\), we have
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf z}_k \Vert _\Lambda ^2] &=& \sum _{r_k = 1}^m \frac{{\Vert A_{r_k*}\Vert }^2}{\Vert A\Vert _F^2} \frac{(\tilde{b}_{r_k} - \langle \tilde{A}_{r_k*} | A^T| {\bf y}_{k} \rangle)^2 }{\Vert A_{r_k*}\Vert ^2} \Vert A_{r_k*}\Vert ^2 \\ &=& \frac{1}{\Vert A\Vert _F^2} \sum _{r_k = 1}^m (b_{r_k} - \langle A_{r_k}| {\bf x}_{k} \rangle)^2 \\ &\le & 2\frac{\Vert {\bf b}\Vert ^2 + \Vert A\Vert _F^2 \Vert {\bf x}_k\Vert ^2}{\Vert A\Vert _F^2} \le 2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} +4 \Vert {\bf x}_*\Vert ^2 + 4\Vert {\bf x}_*-{\bf x}_k\Vert ^2. \end{eqnarray*}\]
As for the inner product between \({\bf y}_k\) and \({\bf z}_k\), we have the following estimate:
\[\begin{eqnarray*} {\mathbb {E}}[\langle {\bf y}_k|{\bf z}_k \rangle _\Lambda ] &=& \sum _{r_k = 1}^m \frac{{\Vert A_{r_k*}\Vert }^2}{\Vert A\Vert _F^2} \frac{(\tilde{b}_{r_k} - \langle \tilde{A}_{r_k*} | A^T| {\bf y}_{k} \rangle) }{\Vert A_{r_k*}\Vert } \langle {\bf y}_k|{\bf e}_{r_k}\rangle \Vert A_{r_k*}\Vert ^2 \\ &=& \sum _{r_k = 1}^m \frac{{\Vert A_{r_k*}\Vert }^2}{\Vert A\Vert _F^2} {(b_{r_k} - \langle A_{r_k*} | A^T| {\bf y}_{k} \rangle) } \langle {\bf y}_k|{\bf e}_{r_k}\rangle \\ &=& \frac{\langle {\bf b}| {\bf y}_k\rangle _\Lambda - \Vert {\bf x}_k\Vert _\Lambda ^2}{\Vert A\Vert _F^2} = \frac{\langle {\bf x}_*|A^T| {\bf y}_k\rangle _\Lambda - \Vert {\bf x}_k\Vert _\Lambda ^2}{\Vert A\Vert _F^2} \\ &=& \frac{\langle {\bf x}_*| {\bf x}_k\rangle _\Lambda - \Vert {\bf x}_k\Vert _\Lambda ^2}{\Vert A\Vert _F^2} \le \Vert {\bf x}_* \Vert \Vert {\bf x}_k\Vert + \Vert {\bf x}_k\Vert ^2\\ &\le & 3\Vert {\bf x}_* \Vert ^2 +\Vert {\bf x}_* \Vert \Vert {\bf x}_k-{\bf x}_*\Vert +2\Vert {\bf x}_k-{\bf x}_*\Vert ^2 \\ &\le & \frac{7}{2}\Vert {\bf x}_* \Vert ^2 +\frac{5}{2}\Vert {\bf x}_k-{\bf x}_*\Vert ^2. \end{eqnarray*}\]
In the above, we used the fact that for any two vectors \({\bf a},{\bf b}\), we have \(|\langle {\bf a}| {\bf b}\rangle _\Lambda | \le \Vert \Lambda \Vert ^2 |\langle {\bf a}| {\bf b}\rangle |\) and \(\Vert \Lambda \Vert ^2 \le \Vert A\Vert _F^2\).
Hence, we have
\[\begin{eqnarray*} {\mathbb {E}}\left[\Vert {\bf y}_{k+1}\Vert _\Lambda ^2\right] &=& {\mathbb {E}}\left[\Vert {\bf y}_{k}\Vert _\Lambda ^2\right] + {\mathbb {E}}\left[\Vert {\bf z}_{k}\Vert _\Lambda ^2\right] + {\mathbb {E}}\left[\Vert {\bf z}_{k}^{\prime }\Vert _\Lambda ^2\right] +2{\mathbb {E}}[\langle {\bf y}_k |{\bf z}_k\rangle _\Lambda ] \\ &\le & {\mathbb {E}}\left[\Vert {\bf y}_k \Vert _\Lambda ^2\right] + 2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} + \left(9+ \frac{\epsilon ^2}{2T}\right){\mathbb {E}}[\Vert {\bf x}_k-{\bf x}_*\Vert ^2] + \left(11+\frac{\epsilon ^2}{2T}\right) \Vert {\bf x}_*\Vert ^2 \\ &\le & {\mathbb {E}}\left[\Vert {\bf y}_k \Vert _\Lambda ^2\right] + 2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \Vert {\bf x}_*\Vert ^2, \end{eqnarray*}\]
where we use that \({\mathbb {E}}[\Vert {\bf x}_k-{\bf x}_*\Vert ^2] \le \Vert {\bf x}_*\Vert ^2\) by Lemma 2. Therefore,
\[\begin{eqnarray*} {\mathbb {E}}\left[\Vert {\bf y}_T \Vert _\Lambda ^2\right] \le T\left(2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \Vert {\bf x}_*\Vert ^2\right). \end{eqnarray*}\]
This means that, with high probability,
\begin{equation*} \phi = T \frac{\Vert {\bf y}_T\Vert _{\Lambda }^2}{\Vert {\bf x}_T\Vert ^2} \le T^2\left(2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2\Vert {\bf x}_T\Vert ^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \frac{\Vert {\bf x}_*\Vert ^2}{\Vert {\bf x}_T\Vert ^2}\right) =O(T^2). \end{equation*}
When \(Z\ne 0\), then \({\bf b}= A{\bf x}_* + {\bf c}\) for some vector \({\bf c}\) of norm Z that is not in the column space of A. This can happen when A is not full rank. Since \({\bf c}\) is independent of A, we cannot bound it in terms of A. In this case, the only change is \({\mathbb {E}}[\langle {\bf y}_k|{\bf z}_k \rangle _\Lambda ]\), which is now bounded by
\[\begin{eqnarray*} {\mathbb {E}}[\langle {\bf y}_k|{\bf z}_k \rangle _\Lambda ] &\le & \frac{\langle {\bf c}|{\mathbb {E}}[{\bf y}_k]\rangle _\Lambda }{\Vert A\Vert _F^2}+\frac{7}{2}\Vert {\bf x}_* \Vert ^2 +\frac{5}{2}\Vert {\bf x}_k-{\bf x}_*\Vert ^2 \\ &\le & \frac{\Vert A\Vert ^2}{\Vert A\Vert _F^2}\Vert {\bf c}\Vert \Vert {\mathbb {E}}[{\bf y}_k]\Vert + \frac{7}{2}\Vert {\bf x}_* \Vert ^2 +\frac{5}{2}\Vert {\bf x}_k-{\bf x}_*\Vert ^2 \\ &=& \frac{\kappa ^2Z}{\kappa _F^2} \Vert {\mathbb {E}}[{\bf y}_k]\Vert + \frac{7}{2}\Vert {\bf x}_* \Vert ^2 +\frac{5}{2}\Vert {\bf x}_k-{\bf x}_*\Vert ^2. \end{eqnarray*}\]
At the end, we obtain
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf y}_{k+1}\Vert _\Lambda ^2] \le {\mathbb {E}}[\Vert {\bf y}_k\Vert _\Lambda ^2] + 2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \Vert {\bf x}_*\Vert ^2 + \frac{2\kappa ^2Z}{\kappa _F^2} \Vert {\mathbb {E}}[{\bf y}_k]\Vert . \end{eqnarray*}\]
From Equation (26), we know that
\begin{equation*} {\mathbb {E}}[{\bf y}_{k+1}] =\left(I - \frac{AA^T}{\Vert A\Vert _F^2}\right){\mathbb {E}}[{\bf y}_k] + \frac{{\bf b}}{\Vert A\Vert _F^2}. \end{equation*}
This means
\begin{equation*} \Vert {\mathbb {E}}[{\bf y}_k]\Vert = \left\Vert \sum _{i=0}^{k-1} \left(I - \frac{AA^T}{\Vert A\Vert _F^2}\right)^i \frac{{\bf b}}{\Vert A\Vert _F^2}\right\Vert \le \sum _{i=0}^{k-1} \left(1 - \kappa _F^{-2}\right)^i \frac{\Vert {\bf b}\Vert }{\Vert A\Vert _F^2} \le \frac{\kappa _F^2 \Vert {\bf b}\Vert }{\Vert A\Vert _F^2}. \end{equation*}
Therefore,
\[\begin{eqnarray*} {\mathbb {E}}\left[\Vert {\bf y}_T\Vert _\Lambda ^2\right] &\le & T\left(\frac{2\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \Vert {\bf x}_*\Vert ^2 + \frac{2\kappa ^2 \Vert {\bf b}\Vert Z}{\Vert A\Vert _F^2} \right) \\ &=& T\left(\frac{2\Vert A{\bf x}_*\Vert ^2 }{\Vert A\Vert _F^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \Vert {\bf x}_*\Vert ^2 + \frac{2\kappa ^2 \Vert {\bf b}\Vert Z + 2Z^2}{\Vert A\Vert _F^2}\right). \end{eqnarray*}\]
Finally, by Markov’s inequality, with high probability, we have
\begin{equation*} \phi = T \frac{\Vert {\bf y}_T\Vert _{\Lambda }^2}{\Vert {\bf x}_T\Vert ^2} = O\left(T^2+ T^2 \frac{\kappa ^2 \Vert {\bf b}\Vert Z + Z^2}{\Vert A\Vert _F^2\Vert {\bf x}_*\Vert ^2} \right), \end{equation*}
where we used the fact that \(\Vert {\bf x}_T-{\bf x}_*\Vert \le \epsilon \Vert {\bf x}_*\Vert\) and \(\Vert A{\bf x}_*\Vert ^2 / \Vert A\Vert _F^2 \le \Vert {\bf x}_*\Vert ^2\). Note that \(\Vert A\Vert _F\Vert {\bf x}_*\Vert = \Vert A\Vert _F\Vert A^{+}{\bf b}\Vert \ge \Vert A\Vert _F \Vert {\bf b}\Vert /\Vert A\Vert \ge Z\), so the second term is bounded by \(O(T^2 \kappa ^4 Z/\kappa _F^2\Vert {\bf b}\Vert)\). In the worst case, \(\phi = O(T^2\kappa ^2)\) because \(\kappa ^2 Z\le \kappa _F^2\Vert {\bf b}\Vert\).

B Estimation of the Convergence Rate

For simplicity, we assume that \(A{\bf x}_* = {\bf b}\). Following from the analysis of Reference [35], the convergence rate does not change too much if the linear system is not consistent. By the updating formula (18), we have
\[\begin{eqnarray*} {\bf x}_{k+1} - {\bf x}_* &=& {\bf x}_k - {\bf x}_* + \frac{1}{2} \sum _{i\in {\mathcal {E}}_k} (\tilde{b}_{i} - \langle \tilde{A}_{i*} |{\bf x}_{k}\rangle) | \tilde{A}_{i*} \rangle + \frac{1}{2} \sum _{i\in {\mathcal {E}}_k} \langle \tilde{A}_{i*} | I - D_i |{\bf x}_{k}\rangle | \tilde{A}_{i*} \rangle \\ &=& \left(I - \frac{1}{2} \sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right) ({\bf x}_k - {\bf x}_*) + \frac{1}{2} \sum _{i\in {\mathcal {E}}_k} \langle \tilde{A}_{i*} | I - D_i |{\bf x}_{k}\rangle | \tilde{A}_{i*} \rangle . \end{eqnarray*}\]
Below, we try to bound \({\mathbb {E}}[\Vert {\bf x}_{k+1} - {\bf x}_*\Vert ^2]\). We will follow the notation of Equation (14). But, here, to avoid any confusion, we denote
\begin{equation*} \mu _{ik} := \langle \tilde{A}_{i*} | I - D_i |{\bf x}_{k} \rangle . \end{equation*}
In the following, the result of Lemma 9 will be used, and \(|{\mathcal {E}}_k| = \Vert A\Vert _F^2/\Vert A\Vert ^2\).
First, we have
\[\begin{eqnarray*} {\mathbb {E}}_{D}\left[\left\Vert \sum _{i\in {\mathcal {E}}_k} \langle \tilde{A}_{i*} | I - D_i |{\bf x}_{k} \rangle | \tilde{A}_{i*} \rangle \right\Vert ^2\right] &=& \sum _{i,j\in {\mathcal {E}}_k} \langle \tilde{A}_{i*}|\tilde{A}_{j*}\rangle {\mathbb {E}}_{D_i,D_j}[ \mu _{ik}\mu _{jk} ] \\ &=& \sum _{i\in {\mathcal {E}}_k} {\mathbb {E}}_{D_i} [ \mu _{ik}^2 ] +\sum _{i\ne j} \langle \tilde{A}_{i*}|\tilde{A}_{j*}\rangle {\mathbb {E}}_{D_i}\left[ \mu _{ik}\right] {\mathbb {E}}_{D_j}[\mu _{jk}] \\ &\le & \frac{\Vert A\Vert _F^4\Vert {\bf x}_k\Vert ^2}{d\Vert A\Vert ^2\min _{l\in [n]}\Vert A_{*l}\Vert ^2}. \end{eqnarray*}\]
By Lemma 9, we have
\[\begin{eqnarray*} && {\mathbb {E}}_D\left[\left\langle \left(I - \frac{1}{2} \sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right) ({\bf x}_k - {\bf x}_*) \Bigg | \sum _{i\in {\mathcal {E}}_k} \mu _{ik} | \tilde{A}_{i*} \rangle \right\rangle \right] \\ &=& \left\langle \left(I - \frac{1}{2}\sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right) ({\bf x}_k - {\bf x}_*) \Bigg | \sum _{i\in {\mathcal {E}}_k} {\mathbb {E}}_D[\mu _{ik}] | \tilde{A}_{i*} \rangle \right\rangle = 0. \end{eqnarray*}\]
Hence, after computing the mean value over D, we have
\[\begin{eqnarray*} \Vert {\bf x}_{k+1} - {\bf x}_*\Vert ^2 \le \left\Vert \left(I - \frac{1}{2} \sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right) ({\bf x}_k - {\bf x}_*) \right\Vert ^2 + \frac{\Vert A\Vert _F^4\Vert {\bf x}_k\Vert ^2}{4d\Vert A\Vert ^2\min _{l\in [n]}\Vert A_{*l}\Vert ^2}. \end{eqnarray*}\]
For the first term, we now compute its mean value over the random variable \({\mathcal {E}}_k\)
\[\begin{eqnarray*} && {\mathbb {E}}\left[\left\Vert \left(I -\frac{1}{2} \sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right) ({\bf x}_k - {\bf x}_*) \right\Vert ^2\right] \\ &=& \langle {\bf x}_k - {\bf x}_* | {\mathbb {E}}\left[ \left(I -\frac{1}{2} \sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right)^2 \right] | {\bf x}_k - {\bf x}_*\rangle . \end{eqnarray*}\]
And it can be shown that
\[\begin{eqnarray*} && {\mathbb {E}}\left[ \left(I -\frac{1}{2} \sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\right)^2 \right] \\ &=& {\mathbb {E}}\left[I - \frac{3}{4}\sum _{i\in {\mathcal {E}}_k} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}| + \frac{1}{4} \sum _{i,j\in {\mathcal {E}}_k, i\ne j} | \tilde{A}_{i*} \rangle \langle \tilde{A}_{i*}|\tilde{A}_{j*}\rangle \langle \tilde{A}_{j*}|\right] \\ &=& I - \frac{3q}{4}\frac{A^T A}{\Vert A\Vert _F^2} + \frac{1}{4} (q^2-q) \left(\frac{A^T A}{\Vert A\Vert _F^2} \right)^2 \\ &\preceq & \left(1-\frac{3q}{4} \frac{\sigma _{\min }(A^T A)}{\Vert A\Vert _F^2}+ \frac{1}{4} (q^2-q) \left(\frac{\sigma _{\min }(A^T A)}{\Vert A\Vert _F^2} \right)^2 \right) I \\ &\preceq & \left(1-\frac{1}{2\kappa ^2} \right) I. \end{eqnarray*}\]
In the last step, we used the result \(q=\Vert A\Vert _F^2/\Vert A\Vert ^2\) so the second term is \(3/4\kappa ^2\) and the third term is less than \(1/4\kappa ^4 \le 1/4\kappa ^2\).
Therefore,
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf x}_{k+1} - {\bf x}_*\Vert ^2] \le \left(1-\frac{1}{2\kappa ^2}\right) {\mathbb {E}}[\Vert {\bf x}_{k} - {\bf x}_*\Vert ^2] + \frac{\Vert A\Vert _F^4{\mathbb {E}}[\Vert {\bf x}_k\Vert ^2]}{4d\Vert A\Vert ^2\min _{l\in [n]}\Vert A_{*l}\Vert ^2}. \end{eqnarray*}\]
Now, set \(T = O(\kappa ^2 \log (2/\epsilon ^2))\), and
\begin{equation} d = \frac{\Vert A\Vert _F^4 T}{\epsilon ^2\Vert A\Vert ^2\min _{l\in [n]}\Vert A_{*l}\Vert ^2}. \end{equation}
(28)
Then,
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf x}_{k+1} - {\bf x}_*\Vert ^2] &\le & \left(1-\frac{1}{2\kappa ^2}\right) {\mathbb {E}}[\Vert {\bf x}_{k} - {\bf x}_*\Vert ^2] + \frac{\epsilon ^2}{4T} {\mathbb {E}}[\Vert {\bf x}_k\Vert ^2] \\ &\le & \left(1-\frac{1}{2\kappa ^2}+ \frac{\epsilon ^2}{2T}\right) {\mathbb {E}}[\Vert {\bf x}_{k} - {\bf x}_*\Vert ^2] + \frac{\epsilon ^2}{2T} \Vert {\bf x}_*\Vert ^2. \end{eqnarray*}\]
Finally, we obtain
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf x}_T - {\bf x}_*\Vert ^2] \lesssim \left(1-\frac{1}{2\kappa ^2} + \frac{\epsilon ^2}{2T}\right)^T \Vert {\bf x}_{0} - {\bf x}_*\Vert ^2 + \frac{\epsilon ^2}{2} \Vert {\bf x}_*\Vert ^2 \le \epsilon ^2 \Vert {\bf x}_*\Vert ^2. \end{eqnarray*}\]

C Estimation of \(\phi\) for Kaczmarz Method with Averaging

The calculation here is similar to that in Appendix A. For simplicity, denote
\begin{equation*} {\bf y}_{k+1} = {\bf y}_k + \frac{1}{2} {\bf w}_k + \frac{1}{2} {\bf w}_k^{\prime }, \end{equation*}
where
\[\begin{eqnarray*} {\bf w}_k := \sum _{i \in {\mathcal {E}}_k} \frac{b_{i} - \langle A_{i*}| {\bf x}_k \rangle }{\Vert A_{i*}\Vert ^2} {\bf e}_{i*}, \quad {\bf w}_k ^{\prime } := \sum _{i\in {\mathcal {E}}_k} \frac{\mu _{ik}}{\Vert A_{i*}\Vert } {\bf e}_{i*}. \end{eqnarray*}\]
In this section, d is given in formula (28). From a similar estimation in Appendix A, we have \({\mathbb {E}}_D[\langle {\bf w}_k|{\bf w}_k^{\prime }\rangle _\Lambda ] ={\mathbb {E}}_D[\langle {\bf y}_k|{\bf w}_k^{\prime }\rangle _\Lambda ] = 0\) and
\[\begin{eqnarray*} {\mathbb {E}}_D[\Vert {\bf w}_k^{\prime }\Vert _\Lambda ^2] \le \frac{\Vert A\Vert _F^2}{\Vert A\Vert ^2}\frac{\Vert A\Vert _F^2 \Vert {\bf x}_k\Vert ^2}{d\min _{j \in [n]} \Vert A_{*j}\Vert ^2} = \frac{\epsilon ^2\Vert {\bf x}_k\Vert ^2}{4T} \le \frac{\epsilon ^2(\Vert {\bf x}_k-{\bf x}_*\Vert ^2+\Vert {\bf x}_*\Vert ^2)}{2T}. \end{eqnarray*}\]
As for \(\Vert {\bf w}_k\Vert _\Lambda ^2\), we still have
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf w}_k\Vert _\Lambda ^2] &=&{\mathbb {E}}\left[ \sum _{i,j \in {\mathcal {E}}_k} \frac{b_{i} - \langle A_{i*}| {\bf x}_k \rangle }{\Vert A_{i*}\Vert ^2} \frac{b_{j} - \langle A_{j*}| {\bf x}_k \rangle }{\Vert A_{j*}\Vert ^2} \langle {\bf e}_{i*}|{\bf e}_{j*} \rangle \Vert A_{i*}\Vert ^2 \right] \\ &=& \frac{\Vert A\Vert _F^2}{\Vert A\Vert ^2} {\mathbb {E}}\left[\frac{(b_{i} - \langle A_{i*}| {\bf x}_k \rangle)^2 }{\Vert A_{i*}\Vert ^2}\right] \\ &=& \frac{\Vert {\bf b}- A{\bf x}_k\Vert ^2}{\Vert A\Vert ^2} \\ &\le & \frac{2\Vert {\bf b}\Vert ^2}{\Vert A\Vert ^2} + 2\Vert {\bf x}_k\Vert ^2. \end{eqnarray*}\]
By the estimation of \({\mathbb {E}}[\langle {\bf y}_k|{\bf z}_k\rangle _{\Lambda }]\) in Appendix A and noting that \(\Vert \Lambda \Vert \le \Vert A\Vert\), we also have
\[\begin{eqnarray*} {\mathbb {E}}[\langle {\bf y}_k|{\bf w}_k\rangle _{\Lambda }] = \frac{\Vert A\Vert _F^2}{\Vert A\Vert ^2} {\mathbb {E}}[\langle {\bf y}_k|\frac{b_{i} - \langle A_{i*}| {\bf x}_k \rangle }{\Vert A_{i*}\Vert ^2} {\bf e}_{i*}\rangle ] \le \frac{7}{2}\Vert {\bf x}_* \Vert ^2 +\frac{5}{2}\Vert {\bf x}_k-{\bf x}_*\Vert ^2. \end{eqnarray*}\]
All the estimations above do not change. The constant 1/2 in the decomposition of \({\bf y}_{k+1}\) does not affect the upper bound, so when \(Z=0,\) we have
\[\begin{eqnarray*} {\mathbb {E}}[\Vert {\bf y}_T \Vert _\Lambda ^2] \le T\left(2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \Vert {\bf x}_*\Vert ^2\right), \end{eqnarray*}\]
where \(T=\widetilde{O}(\kappa ^2)\). Therefore,
\begin{equation*} \phi = T\frac{\kappa _F^2}{\kappa ^2} \frac{\Vert {\bf y}_T\Vert _{\Lambda }^2}{\Vert {\bf x}_T\Vert ^2} \le T^2\frac{\kappa _F^2}{\kappa ^2}\left(2\frac{\Vert {\bf b}\Vert ^2 }{\Vert A\Vert _F^2\Vert {\bf x}_T\Vert ^2} + \left(20 + \frac{\epsilon ^2}{T}\right) \frac{\Vert {\bf x}_*\Vert ^2}{\Vert {\bf x}_T\Vert ^2}\right) =O(\kappa _F^2\kappa ^2). \end{equation*}
When \(Z\ne 0\), we similarly have \(\phi = O(\kappa _F^2\kappa ^4)\).

References

[1]
Alexandr Andoni, Robert Krauthgamer, and Yosef Pogrow. 2018. On solving linear systems in sublinear time. In 10th Innovations in Theoretical Computer Science Conference (ITCS’19)(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 124), Avrim Blum (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 3:1–3:19. DOI:
[2]
Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. 2020. Quantum-inspired algorithms in practice. Quantum 4 (2020), 307. arXiv:1905.10415.
[3]
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum machine learning. Nature 549, 7671 (2017), 195–202.
[4]
Jonathan Briskman and Deanna Needell. 2015. Block Kaczmarz method with inequalities. J. Math. Imag. Vis. 52, 3 (2015), 385–396.
[5]
Andrzej Cegielski. 2021. Bibliography on the Kaczmarz method. Retrieved from http://staff.uz.zgora.pl/acegiels/Publications-Kaczmarz-method.pdf.
[6]
Yair Censor and Tommy Elfving. 1982. New methods for linear inequalities. Lin. Algeb. Applic. 42 (1982), 199–211.
[7]
Yair Censor, Stavros Andrea Zenios, et al. 1997. Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press on Demand.
[8]
Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. 2019. The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation. In 46th International Colloquium on Automata, Languages, and Programming (ICALP’19). 33:1–33:14. arXiv:1804.01973.
[9]
Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, and David P. Woodruff. 2020. Quantum-inspired algorithms from randomized numerical linear algebra. arXiv preprint arXiv:2011.04125 (2020).
[10]
Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang. 2020. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC’20). 387–400. arXiv:1910.06151.
[11]
Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang. 2020. Quantum-inspired algorithms for solving low-rank linear equation systems with logarithmic dependence on the dimension. In 31st International Symposium on Algorithms and Computation (ISAAC’20). DOI:
[12]
Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang. 2020. Quantum-inspired classical algorithms for singular value transformation. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS’20). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 23:1–23:15. arXiv:1901.03254.
[13]
Andrew M. Childs, Robin Kothari, and Rolando D. Somma. 2017. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46, 6 (2017), 1920–1950.
[14]
Jesus A. De Loera, Jamie Haddock, and Deanna Needell. 2017. A sampling Kaczmarz-Motzkin algorithm for linear feasibility. SIAM J. Scientif. Comput. 39, 5 (2017), S66–S87.
[15]
Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM J. Comput. 36, 1 (2006), 158–183.
[16]
András Gilyén, Zhao Song, and Ewin Tang. 2020. An improved quantum-inspired algorithm for linear regression. arXiv:2009.07268.
[17]
András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. In 51st Annual ACM SIGACT Symposium on Theory of Computing. 193–204.
[18]
Gene H. Golub and Charles F. van Loan. 2013. Matrix Computations (4th ed.). The Johns Hopkins University Press, Baltimore.
[19]
Richard Gordon, Robert Bender, and Gabor T. Herman. 1970. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theoret. Biol. 29, 3 (1970), 471–481.
[20]
Robert M. Gower and Peter Richtárik. 2015. Randomized iterative methods for linear systems. SIAM J. Matrix Anal. Applic. 36, 4 (2015), 1660–1690.
[21]
Neha Gupta and Aaron Sidford. 2018. Exploiting numerical sparsity for efficient learning: Faster eigenvector computation and regression. In 32nd International Conference on Neural Information Processing Systems. 5274–5283.
[22]
Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 15 (2009), 150502. arXiv:0811.3171.
[23]
Gabor T. Herman, Arnold Lent, and Peter H. Lutz. 1978. Relaxation methods for image reconstruction. Commun. ACM 21, 2 (1978), 152–158.
[24]
Dhawal Jethwani, Franccois Le Gall, and Sanjay K. Singh. 2020. Quantum-inspired classical algorithms for singular value transformation. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS’20). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 53:1–53:14. arXiv:1910.05699.
[25]
S. Karczmarz. 1937. Angenaherte auflosung von systemen linearer glei-chungen. Bull. Int. Acad. Pol. Sic. Let., Cl. Sci. Math. Nat. (1937), 355–357.
[26]
Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. 2019. Q-means: A quantum algorithm for unsupervised machine learning. In Conference on Advances in Neural Information Processing Systems. 4134–4144.
[27]
Iordanis Kerenidis and Anupam Prakash. 2017. Quantum recommendation systems. In 8th Innovations in Theoretical Computer Science Conference (ITCS’17). 49:1–49:21. arXiv:1603.08675.
[28]
Iordanis Kerenidis and Anupam Prakash. 2020. A quantum interior point method for LPs and SDPs. ACM Trans. Quant. Comput. 1, 1 (2020), 1–32.
[29]
Dennis Leventhal and Adrian S. Lewis. 2010. Randomized methods for linear constraints: Convergence rates and conditioning. Math. Oper. Res. 35, 3 (2010), 641–654.
[30]
Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu. 2019. Sublinear quantum algorithms for training linear and kernel-based classifiers. In International Conference on Machine Learning. PMLR, 3815–3824.
[31]
Lin Lin and Yu Tong. 2020. Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems. Quantum 4 (2020), 361.
[32]
Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal component analysis. Nat. Phys. 10, 9 (2014), 631–633. arXiv:1307.0401.
[33]
Nicolas Loizou and Peter Richtárik. 2020. Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods. Computat. Optim. Applic. 77, 3 (2020), 653–710.
[34]
Alessandro Luongo and Changpeng Shao. 2020. Quantum algorithms for spectral sums. arXiv preprint arXiv:2011.06475 (2020).
[35]
Jacob D. Moorman, Thomas K. Tu, Denali Molitor, and Deanna Needell. 2020. Randomized Kaczmarz with averaging. (2020). arXiv:2002.04126.
[36]
Frank Natterer. 2001. The Mathematics of Computerized Tomography. SIAM.
[37]
Ion Necoara. 2019. Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Applic. 40, 4 (2019), 1425–1452. arXiv:1902.09946.
[38]
Deanna Needell. 2010. Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50, 2 (2010), 395–403.
[39]
Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. 2009. Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 4 (2009), 1574–1609.
[40]
Yu Nesterov. 2012. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22, 2 (2012), 341–362.
[41]
Davide Orsucci and Vedran Dunjko. 2021. On solving classes of positive-definite quantum linear systems with quadratically improved runtime in the condition number. arXiv preprint arXiv:2101.11868 (2021).
[42]
Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 13 (2014), 130503. arXiv:1307.0471.
[43]
Peter Richtárik and Martin Takác. 2020. Stochastic reformulations of linear systems: Algorithms and convergence theory. SIAM J. Matrix Anal. Applic. 41, 2 (2020), 487–524.
[44]
Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. SIAM.
[45]
Changpeng Shao and Hua Xiang. 2020. Row and column iteration methods to solve linear systems on a quantum computer. Phys. Rev. A 101, 2 (2020), 022322. arXiv:1905.11686.
[46]
Thomas Strohmer and Roman Vershynin. 2009. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Applic. 15, 2 (2009), 262. arXiv:math/0702226.
[47]
Ewin Tang. 2018. Quantum-inspired classical algorithms for principal component analysis and supervised clustering. (2018). arXiv:1811.00414.
[48]
Ewin Tang. 2019. A quantum-inspired classical algorithm for recommendation systems. In 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19). 217–228. arXiv:1807.04271.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Quantum Computing
ACM Transactions on Quantum Computing  Volume 3, Issue 4
December 2022
230 pages
EISSN:2643-6817
DOI:10.1145/3543988
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2022
Online AM: 25 March 2022
Accepted: 01 February 2022
Revised: 01 December 2021
Received: 01 May 2021
Published in TQC Volume 3, Issue 4

Check for updates

Author Tags

  1. Quantum computing
  2. quantum-inspired algorithm
  3. Kaczmarz method

Qualifiers

  • Research-article
  • Refereed

Funding Sources

  • QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Programme
  • EPSRC
  • European Research Council (ERC)
  • European Union’s Horizon 2020

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)238
  • Downloads (Last 6 weeks)19
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Implementing any Linear Combination of Unitaries on Intermediate-term Quantum ComputersQuantum10.22331/q-2024-10-10-14968(1496)Online publication date: 10-Oct-2024
  • (2024)Quantum Communication Complexity of Linear RegressionACM Transactions on Computation Theory10.1145/362522516:1(1-30)Online publication date: 12-Mar-2024
  • (2024)Qubit-Efficient Randomized Quantum Algorithms for Linear AlgebraPRX Quantum10.1103/PRXQuantum.5.0203245:2Online publication date: 30-Apr-2024
  • (2024)An efficient quantum algorithm for independent component analysisNew Journal of Physics10.1088/1367-2630/ad5e1626:7(073030)Online publication date: 19-Jul-2024
  • (2024)Reflective block Kaczmarz algorithms for least squaresLinear Algebra and its Applications10.1016/j.laa.2024.10.009Online publication date: Oct-2024
  • (2024)On the Polyak momentum variants of the greedy deterministic single and multiple row‐action methodsNumerical Linear Algebra with Applications10.1002/nla.255231:4Online publication date: 14-Mar-2024
  • (2023)A Deterministic Kaczmarz Algorithm for Solving Linear SystemsSIAM Journal on Matrix Analysis and Applications10.1137/21M146330644:1(212-239)Online publication date: 10-Mar-2023

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media