Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Model-guided synthesis of inductive lemmas for FOL with least fixpoints

Published: 31 October 2022 Publication History

Abstract

Recursively defined linked data structures embedded in a pointer-based heap and their properties are naturally expressed in pure first-order logic with least fixpoint definitions (FO+lfp) with background theories. Such logics, unlike pure first-order logic, do not admit even complete procedures. In this paper, we undertake a novel approach for synthesizing inductive hypotheses to prove validity in this logic. The idea is to utilize several kinds of finite first-order models as counterexamples that capture the non-provability and invalidity of formulas to guide the search for inductive hypotheses. We implement our procedures and evaluate them extensively over theorems involving heap data structures that require inductive proofs and demonstrate the effectiveness of our methodology.

References

[1]
Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthesis. IOS Press, 1– 25. https://doi.org/10.3233/978-1-61499-495-4-1
[2]
Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. 2018. Search-Based Program Synthesis. Commun. ACM, 61, 12 (2018), Nov., 84–93. issn:0001-0782 https://doi.org/10.1145/3208071
[3]
Thomas Ball and Sriram K. Rajamani. 2002. The SLAM Project: Debugging System Software via Static Analysis. 1–3. isbn:1581134509 https://doi.org/10.1145/503272.503274
[4]
Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. 2019. HOList: An Environment for Machine Learning of Higher-Order Theorem Proving. https://doi.org/10.48550/ARXIV.1904.03241
[5]
Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 171–177. isbn:978-3-642-22110-1 https://doi.org/10.1007/978-3-642-22110-1_14
[6]
Robert S. Boyer and J. Strother Moore. 1988. A Computational Logic Handbook. Academic Press Professional, Inc., USA. isbn:0121229521
[7]
Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision Procedures with Applications to Verification. Springer-Verlag, Berlin, Heidelberg. isbn:3540741127 https://doi.org/10.1007/978-3-540-74113-8
[8]
James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. 2011. Automated Cyclic Entailment Proofs in Separation Logic. In Automated Deduction – CADE-23, Nikolaj Bjørner and Viorica Sofronie-Stokkermans (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 131–146. isbn:978-3-642-22438-6 https://doi.org/10.1007/978-3-642-22438-6_12
[9]
Cristiano Calcagno, Philippa Gardner, and Matthew Hague. 2005. From Separation Logic to First-Order Logic. In Foundations of Software Science and Computational Structures, Vladimiro Sassone (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 395–409. isbn:978-3-540-31982-5 https://doi.org/10.1007/978-3-540-31982-5_25
[10]
Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. 2015. Automatic Induction Proofs of Data-Structures in Imperative Programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). Association for Computing Machinery, New York, NY, USA. 457–466. isbn:9781450334686 https://doi.org/10.1145/2737924.2737984
[11]
Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2013. Automating Inductive Proofs Using Theory Exploration. In Automated Deduction - CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, Maria Paola Bonacina (Ed.) (Lecture Notes in Computer Science, Vol. 7898). Springer, 392–406. https://doi.org/10.1007/978-3-642-38574-2_27
[12]
Simon Cruanes. 2017. Superposition with Structural Induction. In Frontiers of Combining Systems, Clare Dixon and Marcelo Finger (Eds.). Springer International Publishing, Cham. 172–188. isbn:978-3-319-66167-4 https://doi.org/10.1007/978-3-319-66167-4_10
[13]
Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 337–340. isbn:978-3-540-78800-3 https://doi.org/10.1007/978-3-540-78800-3_24
[14]
David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A Theorem Prover for Program Checking. J. ACM, 52, 3 (2005), May, 365–473. issn:0004-5411 https://doi.org/10.1145/1066100.1066102
[15]
H.B. Enderton. 2001. A Mathematical Introduction to Logic. Elsevier Science Publishers Ltd. isbn:978-0-12-238452-3 https://doi.org/10.1016/C2009-0-22107-6
[16]
Yotam M. Y. Feldman, Oded Padon, Neil Immerman, Mooly Sagiv, and Sharon Shoham. 2017. Bounded Quantifier Instantiation for Checking Inductive Invariants. In Tools and Algorithms for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 76–95. isbn:978-3-662-54577-5 https://doi.org/10.1007/978-3-662-54577-5_5
[17]
Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants. In Computer Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham. 69–87. isbn:978-3-319-08867-9 https://doi.org/10.1007/978-3-319-08867-9_5
[18]
Yeting Ge and Leonardo de Moura. 2009. Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories. In Computer Aided Verification, Ahmed Bouajjani and Oded Maler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 306–320. isbn:978-3-642-02658-4 https://doi.org/10.1007/978-3-642-02658-4_25
[19]
Hari Govind V K, Sharon Shoham, and Arie Gurfinkel. 2022. Solving Constrained Horn Clauses modulo Algebraic Data Types and Recursive Functions. Proc. ACM Program. Lang., 6, POPL (2022), Article 60, Jan, 29 pages. https://doi.org/10.1145/3498722
[20]
Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein. 2007. Finite Model Theory and Its Applications. Springer. isbn:978-3-540-00428-8 https://doi.org/10.1007/3-540-68804-8
[21]
Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei Voronkov. 2020. Induction with Generalization in Superposition Reasoning. In Intelligent Computer Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, Christoph Benzmüller and Bruce R. Miller (Eds.) (Lecture Notes in Computer Science, Vol. 12236). Springer, 123–137. https://doi.org/10.1007/978-3-030-53518-6_8
[22]
Wilfrid Hodges. 1997. A Shorter Model Theory. Cambridge University Press, USA. isbn:0521587131
[23]
Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 41–55. isbn:978-3-642-20398-5 https://doi.org/10.1007/978-3-642-20398-5_4
[24]
Moa Johansson. 2019. Lemma Discovery for Induction - A Survey. In Intelligent Computer Mathematics - 12th International Conference, CICM 2019, Prague, Czech Republic, July 8-12, 2019, Proceedings, Cezary Kaliszyk, Edwin C. Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen (Eds.) (Lecture Notes in Computer Science, Vol. 11617). Springer, 125–139. https://doi.org/10.1007/978-3-030-23250-4_9
[25]
Matt Kaufmann and J. S. Moore. 1997. An Industrial Strength Theorem Prover for a Logic Based on Common Lisp. IEEE Trans. Softw. Eng., 23, 4 (1997), April, 203–213. issn:0098-5589 https://doi.org/10.1109/32.588534
[26]
Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. 2000. Computer-Aided Reasoning: An Approach. Springer New York, NY. isbn:978-1-4615-4449-4 https://doi.org/10.1007/978-1-4615-4449-4
[27]
Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. 2020. First-Order Quantified Separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA. 703–717. isbn:9781450376136 https://doi.org/10.1145/3385412.3386018
[28]
Laura Kovács, Simon Robillard, and Andrei Voronkov. 2017. Coming to Terms with Quantified Reasoning. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’17). ACM, New York, NY, USA. 260–270. isbn:978-1-4503-4660-3 https://doi.org/10.1145/3009837.3009887
[29]
Paul Krogmeier and P. Madhusudan. 2022. Learning Formulas in Finite Variable Logics. Proc. ACM Program. Lang., 6, POPL (2022), Article 10, Jan, 28 pages. https://doi.org/10.1145/3498671
[30]
Quang Loc Le, Makoto Tatsuta, Jun Sun, and Wei-Ngan Chin. 2017. A Decidable Fragment in Separation Logic with Inductive Predicates and Arithmetic. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham. 495–517. isbn:978-3-319-63390-9 https://doi.org/10.1007/978-3-319-63390-9_26
[31]
K. Rustan M. Leino. 2012. Automating Induction with an SMT Solver. In Proceedings of the 13th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’12). Springer-Verlag, Berlin, Heidelberg. 315–331. isbn:9783642279393 https://doi.org/10.1007/978-3-642-27940-9_21
[32]
Leonid Libkin. 2004. Elements of Finite Model Theory. Springer Berlin, Heidelberg. isbn:978-3-662-07003-1 https://doi.org/10.1007/978-3-662-07003-1
[33]
Christof Löding, P. Madhusudan, and Lucas Peña. 2018. Foundations for natural proofs and quantifier instantiation. PACMPL, 2, POPL (2018), 10:1–10:30. https://doi.org/10.1145/3158098
[34]
P. Madhusudan, Xiaokang Qiu, and Andrei Ştefănescu. 2012. Recursive Proofs for Inductive Tree Data-structures. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’12). ACM, New York, NY, USA. 123–136. isbn:978-1-4503-1083-3 https://doi.org/10.1145/2103656.2103673
[35]
A. I. Mal’tsev. 1962. Axiomatizable classes of locally free algebras of certain types. Sibirsk. Mat. Zh., 3 (1962), 729–743. http://mi.mathnet.ru/eng/smj/v3/i5/p729
[36]
Adithya Murali, Lucas Peña, Eion Blanchard, Christof Löding, and P. Madhusudan. 2022. Artifact for OOPSLA 2022 Article Model-Guided Synthesis of Inductive Lemmas for FOL with Least Fixpoints. https://doi.org/10.1145/3554331
[37]
Adithya Murali, Lucas Peña, Christof Löding, and P. Madhusudan. 2020. A First-Order Logic with Frames. In Programming Languages and Systems, Peter Müller (Ed.). Springer International Publishing, Cham. 515–543. isbn:978-3-030-44914-8 https://doi.org/10.1007/978-3-030-44914-8_19
[38]
Kedar S. Namjoshi and Robert P. Kurshan. 2000. Syntactic Program Transformations for Automatic Abstraction. In Computer Aided Verification, E. Allen Emerson and Aravinda Prasad Sistla (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 435–449. isbn:978-3-540-45047-4 https://doi.org/10.1007/10722167_33
[39]
Daniel Neider, Pranav Garg, P. Madhusudan, Shambwaditya Saha, and Daejun Park. 2018. Invariant Synthesis for Incomplete Verification Engines. In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer and Marieke Huisman (Eds.). Springer International Publishing, Cham. 232–250. isbn:978-3-319-89960-2 https://doi.org/10.1007/978-3-319-89960-2_13
[40]
Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph. D. Dissertation. Stanford University. Stanford, CA, USA. AAI8011683
[41]
Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision Procedures. ACM Trans. Program. Lang. Syst., 1, 2 (1979), Oct, 245–257. issn:0164-0925 https://doi.org/10.1145/357073.357079
[42]
Huu Hai Nguyen and Wei-Ngan Chin. 2008. Enhancing Program Verification with Lemmas. In Proceedings of the 20th International Conference on Computer Aided Verification (CAV ’08). Springer-Verlag, Berlin, Heidelberg. 355–369. isbn:9783540705437 https://doi.org/10.1007/978-3-540-70545-1_34
[43]
Grant Passmore, Simon Cruanes, Denis Ignatovich, Dave Aitken, Matt Bray, Elijah Kagan, Kostya Kanishev, Ewen Maclean, and Nicola Mometto. 2020. The Imandra Automated Reasoning System (System Description). In Automated Reasoning, Nicolas Peltier and Viorica Sofronie-Stokkermans (Eds.). Springer International Publishing, Cham. 464–471. isbn:978-3-030-51054-1 https://doi.org/10.1007/978-3-030-51054-1_30
[44]
Edgar Pek, Xiaokang Qiu, and P. Madhusudan. 2014. Natural Proofs for Data Structure Manipulation in C Using Separation Logic. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA. 440–451. isbn:978-1-4503-2784-8 https://doi.org/10.1145/2594291.2594325
[45]
Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and P. Madhusudan. 2013. Natural Proofs for Structure, Data, and Separation. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM, New York, NY, USA. 231–242. isbn:978-1-4503-2014-6 https://doi.org/10.1145/2491956.2462169
[46]
Andrew Reynolds. 2017. Conflicts, Models and Heuristics for Quantifier Instantiation in SMT. In Vampire 2016. Proceedings of the 3rd Vampire Workshop, Laura Kovacs and Andrei Voronkov (Eds.) (EPiC Series in Computing, Vol. 44). EasyChair, 1–15. issn:2398-7340 https://doi.org/10.29007/jmd3
[47]
Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett, and Cesare Tinelli. 2019. cvc4sy: Smart and Fast Term Enumeration for Syntax-Guided Synthesis. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham. 74–83. isbn:978-3-030-25543-5 https://doi.org/10.1007/978-3-030-25543-5_5
[48]
Andrew Reynolds and Viktor Kuncak. 2015. Induction for SMT Solvers. In Verification, Model Checking, and Abstract Interpretation, Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 80–98. isbn:978-3-662-46081-8 https://doi.org/10.1007/978-3-662-46081-8_5
[49]
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS ’02). IEEE Press, 55–74. https://doi.org/10.1109/LICS.2002.1029817
[50]
Philipp Rümmer. 2012. E-Matching with Free Variables. In Logic for Programming, Artificial Intelligence, and Reasoning, Nikolaj Bjørner and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 359–374. isbn:978-3-642-28717-6 https://doi.org/10.1007/978-3-642-28717-6_28
[51]
Mihaela Sighireanu, Juan A. Navarro Pérez, Andrey Rybalchenko, Nikos Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan, Christoph Matheja, Thomas Noll, Florian Zuleger, Wei-Ngan Chin, Quang Loc Le, Quang-Trung Ta, Ton-Chanh Le, Thanh-Toan Nguyen, Siau-Cheng Khoo, Michal Cyprian, Adam Rogalewicz, Tomas Vojnar, Constantin Enea, Ondrej Lengal, Chong Gao, and Zhilin Wu. 2019. SL-COMP: Competition of Solvers for Separation Logic. In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen (Eds.). Springer International Publishing, Cham. 116–132. isbn:978-3-030-17502-3 https://doi.org/10.1007/978-3-030-17502-3_8
[52]
Armando Solar Lezama. 2008. Program Synthesis By Sketching. Ph. D. Dissertation. EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
[53]
Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodík, Vijay A. Saraswat, and Sanjit A. Seshia. 2007. Sketching stencils. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and Kathryn S. McKinley (Eds.). ACM, 167–178. https://doi.org/10.1145/1250734.1250754
[54]
William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. 2012. Zeno: An Automated Prover for Properties of Recursive Data Structures. In Tools and Algorithms for the Construction and Analysis of Systems, Cormac Flanagan and Barbara König (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 407–421. isbn:978-3-642-28756-5 https://doi.org/10.1007/978-3-642-28756-5_28
[55]
Philippe Suter, Mirco Dotta, and Viktor Kunćak. 2010. Decision Procedures for Algebraic Data Types with Abstractions. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). ACM, New York, NY, USA. 199–210. isbn:978-1-60558-479-9 https://doi.org/10.1145/1706299.1706325
[56]
Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. 2016. Automated Mutual Explicit Induction Proof in Separation Logic. In FM 2016: Formal Methods, John Fitzgerald, Constance Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.). Springer International Publishing, Cham. 659–676. https://doi.org/10.1007/978-3-319-48989-6_40
[57]
Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. 2017. Automated Lemma Synthesis in Symbolic-Heap Separation Logic. Proc. ACM Program. Lang., 2, POPL (2017), Article 9, Dec, 29 pages. https://doi.org/10.1145/3158097
[58]
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math., 5, 2 (1955), 285 – 309. https://projecteuclid.org/euclid.pjm/1103044538
[59]
Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. 2019. Lemma Synthesis for Automating Induction over Algebraic Data Types. In Principles and Practice of Constraint Programming, Thomas Schiex and Simon de Givry (Eds.). Springer International Publishing, Cham. 600–617. isbn:978-3-030-30048-7 https://doi.org/10.1007/978-3-030-30048-7_35
[60]
Hongce Zhang, Aarti Gupta, and Sharad Malik. 2021. Syntax-Guided Synthesis for Lemma Generation in Hardware Model Checking. In Verification, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, Fritz Henglein, Sharon Shoham, and Yakir Vizel (Eds.) (Lecture Notes in Computer Science, Vol. 12597). Springer, 325–349. https://doi.org/10.1007/978-3-030-67067-2_15

Cited By

View all
  • (2025)Axe ’Em: Eliminating Spurious States with Induction AxiomsProceedings of the ACM on Programming Languages10.1145/37048539:POPL(479-508)Online publication date: 9-Jan-2025
  • (2024)CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational ProofsProceedings of the ACM on Programming Languages10.1145/36746538:ICFP(818-844)Online publication date: 15-Aug-2024
  • (2024)Predictable Verification using Intrinsic DefinitionsProceedings of the ACM on Programming Languages10.1145/36564508:PLDI(1804-1829)Online publication date: 20-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages  Volume 6, Issue OOPSLA2
October 2022
1932 pages
EISSN:2475-1421
DOI:10.1145/3554307
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 October 2022
Published in PACMPL Volume 6, Issue OOPSLA2

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. Counterexample-Guided Inductive Synthesis
  2. First Order Logic with Least Fixpoints
  3. Inductive Hypothesis Synthesis
  4. Learning Logics
  5. Verifying Linked Data Structures

Qualifiers

  • Research-article

Funding Sources

  • Discovery Partners Institute
  • Amazon

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)184
  • Downloads (Last 6 weeks)14
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Axe ’Em: Eliminating Spurious States with Induction AxiomsProceedings of the ACM on Programming Languages10.1145/37048539:POPL(479-508)Online publication date: 9-Jan-2025
  • (2024)CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational ProofsProceedings of the ACM on Programming Languages10.1145/36746538:ICFP(818-844)Online publication date: 15-Aug-2024
  • (2024)Predictable Verification using Intrinsic DefinitionsProceedings of the ACM on Programming Languages10.1145/36564508:PLDI(1804-1829)Online publication date: 20-Jun-2024
  • (2024)An Infinite Needle in a Finite Haystack: Finding Infinite Counter-Models in Deductive VerificationProceedings of the ACM on Programming Languages10.1145/36328758:POPL(970-1000)Online publication date: 5-Jan-2024
  • (2024)Proving Functional Program Equivalence via Directed Lemma SynthesisFormal Methods10.1007/978-3-031-71162-6_28(538-557)Online publication date: 9-Sep-2024
  • (2024)Efficient Implementation of an Abstract Domain of Quantified First-Order FormulasComputer Aided Verification10.1007/978-3-031-65630-9_5(86-108)Online publication date: 24-Jul-2024
  • (2023)Complete First-Order Reasoning for Properties of Functional ProgramsProceedings of the ACM on Programming Languages10.1145/36228357:OOPSLA2(1063-1092)Online publication date: 16-Oct-2023
  • (2023)A First-order Logic with FramesACM Transactions on Programming Languages and Systems10.1145/358305745:2(1-44)Online publication date: 15-May-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media