Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

GIPC: Fast and Stable Gauss-Newton Optimization of IPC Barrier Energy

Published: 23 March 2024 Publication History

Abstract

Barrier functions are crucial for maintaining an intersection- and inversion-free simulation trajectory but existing methods, which directly use distance can restrict implementation design and performance. We present an approach to rewriting the barrier function for arriving at an efficient and robust approximation of its Hessian. The key idea is to formulate a simplicial geometric measure of contact using mesh boundary elements, from which analytic eigensystems are derived and enhanced with filtering and stiffening terms that ensure robustness with respect to the convergence of a Project-Newton solver. A further advantage of our rewriting of the barrier function is that it naturally caters to the notorious case of nearly parallel edge-edge contacts for which we also present a novel analytic eigensystem. Our approach is thus well suited for standard second-order unconstrained optimization strategies for resolving contacts, minimizing nonlinear nonconvex functions where the Hessian may be indefinite. The efficiency of our eigensystems alone yields a 3× speedup over the standard Incremental Potential Contact (IPC) barrier formulation. We further apply our analytic proxy eigensystems to produce an entirely GPU-based implementation of IPC with significant further acceleration.

References

[1]
Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez, and Paul G. Kry. 2010. Volume contact constraints at arbitrary resolution. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’10). 1–10.
[2]
Sheldon Andrews, Kenny Erleben, and Zachary Ferguson. 2022. Contact and friction simulation for computer graphics. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’22). Article 2, 124 pages.
[3]
Ciprian Apetrei. 2014. Fast and simple agglomerative LBVH construction. In Proceedings of the Conference on Theory and Practice of Computer Graphics, Rita Borgo and Wen Tang (Eds.). Eurographics Association, 41–44.
[4]
David Baraff and Andrew P. Witkin. 1998. Large steps in cloth simulation. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’98), Steve Cunningham, Walt Bransford, and Michael F. Cohen (Eds.). ACM, 43–54.
[5]
Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. 594–603.
[6]
Floyd M. Chitalu, Christophe Dubach, and Taku Komura. 2020. Binary ostensibly implicit trees for fast collision detection. Comput. Graph. Forum 39, 2 (2020), 509–521.
[7]
Christer Ericson. 2005. Bounding volume hierarchies. In Real-Time Collision Detection, Christer Ericson (Ed.). Morgan Kaufmann, San Francisco, CA, 235–284.
[8]
Kenny Erleben. 2018. Methodology for assessing mesh-based contact point methods. ACM Trans. Graph. 37, 3 (2018), 1–30.
[9]
Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed globally injective 3D deformation processing. ACM Trans. Graph. 40, 4, Article 75 (2021).
[10]
Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021. Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4, Article 183 (2021).
[11]
Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Trans. Graph. 37, 6 (2018).
[12]
Gaël Guennebaud, Benoît Jacob, et al. 2022. Eigen v3.4. Retrieved from http://eigen.tuxfamily.org
[13]
David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (2008), 1–4.
[14]
Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin. 2022. Differentiable solver for time-dependent deformation problems with contact. Retrieved from https://arxiv:cs.GR/2205.13643
[15]
Geoffrey. Irving, Joseph. Teran, and Ronald Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’04). Eurographics Association, Goslar, DEU, 131–140.
[16]
Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex augmentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017).
[17]
Couro Kane, Jerrold E. Marsden, Michael Ortiz, and Matthew West. 2000. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 10 (2000), 1295–1325.
[18]
C. Kane, E. A. Repetto, M. Ortiz, and J. E. Marsden. 1999. Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Eng. 180, 1 (1999), 1–26.
[19]
Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees, and k-d trees. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG’12), Carsten Dachsbacher, Jacob Munkberg, and Jacopo Pantaleoni (Eds.). 33–37.
[20]
Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered projections for frictional contact in multibody systems. In Proceedings of ACM SIGGRAPH Asia. 1–11.
[21]
Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. Eurographics Association, Goslar, DEU.
[22]
Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic elasticity for inversion-safety and element rehabilitation. ACM Trans. Graph. 38, 4, Article 69 (July2019), 15 pages.
[23]
Theodore Kim and David Eberle. 2020. Dynamic deformables: Implementation and production practicalities. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’20).
[24]
Tamara G. Kolda and Brett W. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (Sept.2009), 455–500.
[25]
Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine body dynamics: Fast, stable & intersection-free simulation of stiff materials. Retrieved from https://2201.10022
[26]
Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang. 2022b. Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4, Article 69 (July2022), 16 pages.
[27]
Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang. 2021. Medial IPC: Accelerated incremental potential contact with medial elastics. ACM Trans. Graph. 40, 4, Article 158 (July2021), 16 pages.
[28]
Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David P. Luebke, and Dinesh Manocha. 2009. Fast BVH construction on GPUs. Comput. Graph. Forum 28, 2 (2009), 375–384.
[29]
Christian Lauterbach, Qi Mo, and Dinesh Manocha. 2010. gProximity: Hierarchical GPU-based operations for collision and distance queries. In Comput. Graph. Forum, Vol. 29. Wiley Online Library, 419–428.
[30]
Cheng Li, Min Tang, Ruofeng Tong, Ming Cai, Jieyi Zhao, and Dinesh Manocha. 2020. P-cloth: Interactive complex cloth simulation on multi-gpu systems using dynamic matrix assembly and pipelined implicit integrators. ACM Trans. Graph. 39, 6 (2020), 1–15.
[31]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020a. Incremental potential contact: Intersection- and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4, Article 49 (2020).
[32]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020b. Technical supplement to incremental potential contact: Intersection- and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020).
[33]
Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental potential contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).
[34]
Siwang Li, Zherong Pan, Jin Huang, Hujun Bao, and Xiaogang Jin. 2015. Deformable objects collision handling with fast convergence. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 269–278.
[35]
Huancheng Lin, Floyd M. Chitalu, and Taku Komura. 2022. Isotropic ARAP energy using cauchy-green invariants. ACM Trans. Graph. 41, 6, Article 275 (Nov.2022), 14 pages.
[36]
Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Viktor Makoviychuk. 2019. Non-smooth newton methods for deformable multi-body dynamics. ACM Trans. Graph. 38, 5, Article 140 (Oct.2019), 20 pages.
[37]
Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. 2019. AMASS: Archive of motion capture as surface shapes. In Proceedings of the International Conference on Computer Vision. 5442–5451.
[38]
Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J. Doyle, Michael Guthe, and Jiří Bittner. 2021. A survey on bounding volume hierarchies for ray tracing. Comput. Graph. Forum 40, 2 (2021), 683–712.
[39]
Matthias Müller, David Charypar, and Markus H. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 4th International Conference on Smart City Applications (SCA’03). The Eurographics Association, 154–159.
[40]
Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air meshes for robust collision handling. ACM Trans. Graph. 34, 4 (2015), 1–9.
[41]
Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2nd ed.). Springer, New York, NY.
[42]
Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit contact handling for deformable objects. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 559–568.
[43]
Simon Pabst, Artur Koch, and Wolfgang Straßer. 2010. Fast and scalable cpu/gpu collision detection for rigid and deformable surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1605–1612.
[44]
Julian Panetta. 2020. Analytic Eigensystems for Isotropic Membrane Energies. Retrieved from https://arxiv.org/abs/2008.10698. DOI:
[45]
Xavier Provot. 1997a. Collision and self-collision handling in cloth model dedicated to design garments. In Proceedings of the Conference on Computer Animation and Simulation, Daniel Thalmann and Michiel van de Panne (Eds.). Springer Vienna, Vienna, 177–189.
[46]
Alvin Shi and Theodore Kim. 2023. A unified analysis of penalty-based collision energies. Proc. ACM Comput. Graph. Interact. Tech. 6, 3, Article 41 (Aug.2023), 19 pages.
[47]
Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’12). Article 20, 50 pages.
[48]
Eftychios Sifakis, Sebastian Marino, and Joseph Teran. 2008. Globally coupled collision handling using volume preserving impulses. In Proceedings of Symposium on Computer Animation.
[49]
Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3 (July2005), 417–425.
[50]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-Hookean flesh simulation. ACM Trans. Graph. 37, 2, Article 12 (Mar.2018), 15 pages.
[51]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic eigensystems for isotropic distortion energies. ACM Trans. Graph. 38, 1, Article 3 (Feb.2019), 15 pages.
[52]
Min Tang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018a. PSCC: Parallel self-collision culling with spatial hashing on GPUs. Proc. ACM Comput. Graph. Interact. Techn. 1, 1 (2018), 1–18.
[53]
Min Tang, Huamin Wang, Le Tang, Ruofeng Tong, and Dinesh Manocha. 2016. CAMA: Contact-aware matrix assembly with unified collision handling for GPU-based cloth simulation. In Proceedings of the Computer Graphics Forum, Vol. 35. Wiley Online Library, 511–521.
[54]
Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018b. I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation. ACM Trans. Graph. 37, 6 (2018), 1–10.
[55]
Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’05). Association for Computing Machinery, New York, NY, 181–190.
[56]
Olivier Tissot. 2019. Iterative Methods for Solving Linear Systems on Massively Parallel Architectures. Thesis. Sorbonne Université. Retrieved from https://theses.hal.science/tel-02428348
[57]
Mickeal Verschoor and Andrei C. Jalba. 2019. Efficient and accurate collision response for elastically deformable models. ACM Trans. Graph. 38, 2 (2019), 1–20.
[58]
Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele Panozzo. 2021. A large-scale benchmark and an inclusion-based algorithm for continuous collision detection. ACM Trans. Graph. 40, 5 (2021), 188:1–188:16.
[59]
Huamin Wang. 2021. GPU-based simulation of cloth wrinkles at submillimeter levels. ACM Trans. Graph. 40, 4 (2021), 1–14.
[60]
Xinlei Wang, Min Tang, Dinesh Manocha, and Ruofeng Tong. 2018. Efficient BVH-based collision detection scheme with ordering and restructuring. Comput. Graph. Forum 37, 2 (2018), 227–237.
[61]
Botao Wu, Zhendong Wang, and Huamin Wang. 2022. A GPU-based multilevel additive schwarz preconditioner for cloth and deformable body simulation. ACM Trans. Graph. 41, 4 (2022), 1–14.

Cited By

View all
  • (2024)Analytic rotation-invariant modelling of anisotropic finite elementsACM Transactions on Graphics10.1145/366608643:5(1-20)Online publication date: 9-Aug-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 2
April 2024
199 pages
EISSN:1557-7368
DOI:10.1145/3613549
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 March 2024
Online AM: 27 January 2024
Accepted: 09 January 2024
Received: 25 September 2023
Published in TOG Volume 43, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. IPC
  2. Barrier Hessian
  3. eigen analysis
  4. GPU

Qualifiers

  • Research-article

Funding Sources

  • Research Grant Council of Hong Kong
  • Innovation and Technology Commission of the HKSAR Government
  • JC STEM Lab of Robotics for Soft Materials
  • The Hong Kong Jockey Club Charities Trust

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,020
  • Downloads (Last 6 weeks)110
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Analytic rotation-invariant modelling of anisotropic finite elementsACM Transactions on Graphics10.1145/366608643:5(1-20)Online publication date: 9-Aug-2024

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media