Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Free access
Just Accepted

Flow-augmentation I: Directed graphs

Online AM: 30 November 2024 Publication History

Abstract

We show a flow-augmentation algorithm in directed graphs: There exists a randomized polynomial-time algorithm that, given a directed graph G, two vertices s, tV(G), and an integer k, adds (randomly) to G a number of arcs such that for every minimal st-cut Z in G of size at most k, with probability 2− poly(k) the set Z becomes a minimum st-cut in the resulting graph. We also provide a deterministic counterpart of this procedure.
The directed flow-augmentation tool allows us to prove fixed-parameter tractability of a number of problems parameterized by the cardinality of the deletion set whose parameterized complexity status was repeatedly posed as open problems:
(1)
Chain SAT, defined by Chitnis, Egri, and Marx [ESA’13, Algorithmica’17],
(2)
a number of weighted variants of classic directed cut problems, such as Weighted st-Cut or Weighted Directed Feedback Vertex Set.
By proving that Chain SAT is FPT, we confirm a conjecture of Chitnis, Egri, and Marx that, for any graph H, if the List H-Coloring problem is polynomial-time solvable, then the corresponding vertex-deletion problem is fixed-parameter tractable.

References

[1]
Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. 2008. A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55, 5 (2008), 21:1–21:19. https://doi.org/10.1145/1411509.1411511
[2]
Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Designing FPT Algorithms for Cut Problems Using Randomized Contractions. SIAM J. Comput. 45, 4 (2016), 1171–1229. https://doi.org/10.1137/15M1032077
[3]
Rajesh Chitnis, László Egri, and Dániel Marx. 2017. List H-Coloring a Graph by Removing Few Vertices. Algorithmica 78, 1 (2017), 110–146. https://doi.org/10.1007/s00453-016-0139-6
[4]
Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx. 2015. Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable. ACM Trans. Algorithms 11, 4 (2015), 28:1–28:28. https://doi.org/10.1145/2700209
[5]
Rajesh Hemant Chitnis, László Egri, and Dániel Marx. 2013. List H-Coloring a Graph by Removing Few Vertices. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings(Lecture Notes in Computer Science, Vol.  8125), Hans L. Bodlaender and Giuseppe F. Italiano (Eds.). Springer, 313–324. https://doi.org/10.1007/978-3-642-40450-4_27
[6]
Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. 2013. Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset. SIAM J. Comput. 42, 4 (2013), 1674–1696. https://doi.org/10.1137/12086217X
[7]
Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3
[8]
Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, and Magnus Wahlström. 2021. Randomized Contractions Meet Lean Decompositions. ACM Trans. Algorithms 17, 1 (2021), 6:1–6:30. https://doi.org/10.1145/3426738
[9]
Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2019. Minimum Bisection Is Fixed-Parameter Tractable. SIAM J. Comput. 48, 2 (2019), 417–450.
[10]
Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale. 2022. Parameterized Complexity of Weighted Multicut in Trees. In WG(Lecture Notes in Computer Science, Vol.  13453). Springer, 257–270.
[11]
Meike Hatzel, Lars Jaffke, Paloma T. Lima, Tomás Masarík, Marcin Pilipczuk, Roohani Sharma, and Manuel Sorge. 2023. Fixed-parameter tractability of DIRECTED MULTICUT with three terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, Nikhil Bansal and Viswanath Nagarajan (Eds.). SIAM, 3229–3244. https://doi.org/10.1137/1.9781611977554.CH123
[12]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2021. Solving hard cut problems via flow-augmentation. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, Dániel Marx (Ed.). SIAM, 149–168. https://doi.org/10.1137/1.9781611976465.11
[13]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2022. Directed flow-augmentation. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam Gupta (Eds.). ACM, 938–947. https://doi.org/10.1145/3519935.3520018
[14]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2022. Flow-augmentation III: Complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied constraints. CoRR abs/2207.07422(2022). https://doi.org/10.48550/arXiv.2207.07422 arXiv:2207.07422
[15]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2023. Flow-augmentation III: Complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied constraints. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, Nikhil Bansal and Viswanath Nagarajan (Eds.). SIAM, 3218–3228. https://doi.org/10.1137/1.9781611977554.CH122
[16]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2024. Flow-augmentation II: Undirected graphs. ACM Trans. Algorithms (jan 2024). https://doi.org/10.1145/3641105 Just Accepted.
[17]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2024. Flow-augmentation II: Undirected Graphs. ACM Trans. Algorithms 20, 2, Article 12 (mar 2024), 26 pages. https://doi.org/10.1145/3641105
[18]
Eun Jung Kim, Tomás Masarík, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström. 2024. On Weighted Graph Separation Problems and Flow Augmentation. SIAM J. Discret. Math. 38, 1 (2024), 170–189. https://doi.org/10.1137/22M153118X
[19]
B. H. Korte and Jens Vygen. 2012. Combinatorial Optimization: Theory and Algorithms. Springer-Verlag, New York, NY. https://doi.org/10.1007/978-3-642-24488-9
[20]
Stefan Kratsch, Shaohua Li, Dániel Marx, Marcin Pilipczuk, and Magnus Wahlström. 2020. Multi-budgeted Directed Cuts. Algorithmica 82, 8 (2020), 2135–2155. https://doi.org/10.1007/s00453-019-00609-1
[21]
Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. 2018. When Recursion is Better than Iteration: A Linear-Time Algorithm for Acyclicity with Few Error Vertices. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, Artur Czumaj (Ed.). SIAM, 1916–1933. https://doi.org/10.1137/1.9781611975031.125
[22]
Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. 2020. Parameterized Complexity and Approximability of Directed Odd Cycle Transversal. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, Shuchi Chawla (Ed.). SIAM, 2181–2200. https://doi.org/10.1137/1.9781611975994.134
[23]
Dániel Marx. 2004. Parameterized Graph Separation Problems. In Parameterized and Exact Computation, First International Workshop, IWPEC 2004, Bergen, Norway, September 14-17, 2004, Proceedings(Lecture Notes in Computer Science, Vol.  3162), Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne (Eds.). Springer, 71–82. https://doi.org/10.1007/978-3-540-28639-4_7
[24]
Dániel Marx. 2006. Parameterized graph separation problems. Theor. Comput. Sci. 351, 3 (2006), 394–406. https://doi.org/10.1016/j.tcs.2005.10.007
[25]
Dániel Marx, Barry O’Sullivan, and Igor Razgon. 2013. Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms 9, 4 (2013), 30:1–30:35. https://doi.org/10.1145/2500119
[26]
Dániel Marx and Igor Razgon. 2009. Constant ratio fixed-parameter approximation of the edge multicut problem. Inf. Process. Lett. 109, 20 (2009), 1161–1166. https://doi.org/10.1016/j.ipl.2009.07.016
[27]
Dániel Marx and Igor Razgon. 2014. Fixed-Parameter Tractability of Multicut Parameterized by the Size of the Cutset. SIAM J. Comput. 43, 2 (2014), 355–388. https://doi.org/10.1137/110855247
[28]
Marcin Pilipczuk and Magnus Wahlström. 2018. Directed Multicut is W[1]-hard, Even for Four Terminal Pairs. ACM Trans. Comput. Theory 10, 3 (2018), 13:1–13:18. https://doi.org/10.1145/3201775
[29]
Saket Saurabh. 2017. What’s next? Future directions in parameterized complexity. https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf Recent Advances in Parameterized Complexity school, Tel Aviv, December 2017.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM Just Accepted
EISSN:1557-735X
Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Online AM: 30 November 2024
Accepted: 06 November 2024
Revised: 25 July 2024
Received: 16 February 2023

Check for updates

Author Tags

  1. graph separation problems
  2. directed graphs
  3. flow-augmentation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 39
    Total Downloads
  • Downloads (Last 12 months)39
  • Downloads (Last 6 weeks)39
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media