Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.2312/pg.20181276guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Anisotropic spectral manifold wavelet descriptor for deformable shape analysis and matching

Published: 08 October 2018 Publication History

Abstract

In this paper, we present a novel framework termed Anisotropic Spectral Manifold Wavelet Transform (ASMWT) for shape analysis. ASMWT comprehensively analyzes the signals from multiple directions on local manifold regions of the shape with a series of low-pass and band-pass frequency filters in each direction. Using the ASMWT coefficients of a very simple function, we efficiently construct a localizable and discriminative multiscale point descriptor, named as the Anisotropic Spectral Manifold Wavelet Descriptor (ASMWD). Since the filters used in our descriptor are direction-sensitive and able to robustly reconstruct the signals with a finite number of scales, it makes our descriptor be intrinsic-symmetry unambiguous, compact as well as efficient. The extensive experimental results demonstrate that our method achieves significant performance than several state-of-the-art methods when applied in vertex-wise shape matching.

References

[1]
{ASC11} Aubry M., Schlickewei U., Cremers D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In IEEE International Conference on Computer Vision Workshops (2011), pp. 1626--1633. 1
[2]
{BMM*15} Boscaini D., Masci J., Melzi S., Bronstein M. M., Castellani U., Vandergheynst P.: Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. symposium on geometry processing 34, 5 (2015), 13--23. 1, 3
[3]
{BMR*16} Boscaini D., Masci J., RodolÃă E., Bronstein M. M., Cremers D.: Anisotropic diffusion descriptors. Computer Graphics Forum 35, 2 (2016), 431--441. 1, 2, 3
[4]
{HVG11} Hammond D. K., Vandergheynst P., Gribonval R.: Wavelets on graphs via spectral graph theory. Applied & Computational Harmonic Analysis 30, 2 (2011), 129--150. 1
[5]
{LB14} Litman R., Bronstein A. M.: Learning spectral descriptors for deformable shape correspondence. IEEE Transactions on Pattern Analysis & Machine Intelligence 36, 1 (2014), 171. 1
[6]
{LH13} Li C., Hamza A. B.: A multiresolution descriptor for deformable 3d shape retrieval. The Visual Computer 29 (2013), 513--524. 1
[7]
{MBBV15} Masci J., Boscaini D., Bronstein M. M., Vandergheynst P.: Geodesic convolutional neural networks on riemannian manifolds. In IEEE International Conference on Computer Vision Workshop (2015), pp. 832--840. 1
[8]
{MOR*18} Melzi S., Ovsjanikov M., Roffo G., Cristani M., Castellani U.: Discrete time evolution process descriptor for shape analysis and matching. Acm Transactions on Graphics 37, 1 (2018), 1--18. 3
[9]
{MRCB16} Melzi S., Rodola E., Castellani U., Bronstein M. M.: Shape analysis with anisotropic windowed fourier transform. In International Conference on 3d Vision (2016), pp. 470--478. 3
[10]
{PWH*17} Pishchulin L., Wuhrer S., Helten T., Theobalt C., Schiele B.: Building statistical shape spaces for 3d human modeling. Pattern Recognition 67 (2017), 276--286. 3
[11]
{SOG10} Sun J., Ovsjanikov M., Guibas L.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28, 5 (2010), 1383--1392. 1
  1. Anisotropic spectral manifold wavelet descriptor for deformable shape analysis and matching

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    PG '18: Proceedings of the 26th Pacific Conference on Computer Graphics and Applications: Short Papers
    October 2018
    101 pages
    ISBN:9783038680734

    Publisher

    Eurographics Association

    Goslar, Germany

    Publication History

    Published: 08 October 2018

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 04 Feb 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media