Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2047950.2047966guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Adaptive generalization backstepping method to synchronize T-system

Published: 15 September 2011 Publication History

Abstract

Chaos is one of the most important phenomenons based on complex nonlinear dynamics. In this paper, we study on T system chaos. This system is resulted from Lorenz chaotic system. Considering the master and slave systems, we design a controller to synchronize these two systems. In this paper, according to unknown and uncertain system parameters, a controller is designed for synchronization via hybrid Adaptive and GBM methods.

References

[1]
Lorenz EN. Deterministic non-periodic flows. J Atmos Sci 1963; 20:130-41.
[2]
Sparrow C. The Lorenz equations: bifurcations, chaos and strange attractors. New York: Springer-Verlag; 1982.
[3]
Chen G, Dong X. From chaos to order: methodologies, perspectives and applications. Singapore: World Scientific; 1998.
[4]
Rossler OE. An equation for continuous chaos. Phys Lett A 1976; 57:397-8.
[5]
Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcat Chaos 1999; 9:1465-6.
[6]
Lü J, Chen G. A new chaotic attractor coined. Int J Bifurcat Chaos 2002; 12:659-61.
[7]
Liu C, Liu T, Liu L, Liu K. A new chaotic attractor. Chaos Solitons and Fractals 2004; 22:1031-8.
[8]
Qi G, Chen G, et al. Analysis of a new chaotic system. Physica A 2005; 352:295-308.
[9]
Liu L, Su Y, et al. A modified Lorenz system. Int J Nonlinear Sci 2006; 7:187-91.
[10]
Qi G, Chen G, Zhang Y. On a new asymmetric chaotic system. Chaos, Solitons and Fractals 2008;37:409-23.
[11]
Qi G, Chen G, et al. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos, Solitons and Fractals 2008; 38:705-21.
[12]
Tigan G. Analysis of a dynamical system derived from the Lorenz system. Sci Bull Politehnica Univ Timisoara 2005; 50:61-72.
[13]
Tigan G, Dumitru O. Analysis of a 3D chaotic system. Chaos, Solitons and Fractals 2008; 36:1315-9.
[14]
Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 1990; 64:821-4.
[15]
Carroll TL, Pecora LM. Synchronizing chaotic circuits. IEEE Trans Circ Syst I 1991; 38:453-6.
[16]
Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with applications to communications. Phys Rev Lett 1993; 71:65-8.
[17]
Perez G, Cedeira H. Extracting messages masked by chaos. Phys Rev Lett 1995; 74:1970-3.
[18]
Liao T, Huang N. An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans Circ Syst I 1999; 46:1144-50.
[19]
Boccaletti S, Kurths J, et al. The synchronization of chaotic systems. Phys Rep 2002; 366:1-101.
[20]
Wang F, Liu C. A new criterion for chaos and hyperchaos synchronization using linear feedback control. Phys Lett A 2006; 360:274-8.
[21]
Yassen MT. Adaptive control and synchronization of a modified Chua's circuit system. Appl Math Comput 2003; 135:113-28.
[22]
Wang C, Ge S. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons and Fractals 2001; 12:1199-206.
[23]
Yu Y, Zhang S. Adaptive backstepping control of the uncertain Lü system. Chin Phys 2002; 11:1249-53.
[24]
Wang F, Liu C. Synchronization of unified chaotic system based on passive control. Physica D 2007; 225:55-60.
[25]
Yan J, Hung M, et al. Robust synchronization of chaotic systems via adaptive sliding mode control. Phys Lett A 2006; 356:220-5.
[26]
Sahab, A.R. and M. Haddad Zarif, Chaos Control in Nonlinear Systems Using the Generalized Backstopping Method, American J. of Engineering and Applied Sciences 1 (4): 378-383, 2008.
[27]
Ali Reza Sahab and Mohammad Haddad Zarif, Improve Backstepping Method to GBM, World Applied Sciences Journal 6 (10): 1399-1403, 2009.
[28]
Yue Wu, Xiaobing Zhou, Jia Chen, Bei Hui, Chaos synchronization of a new 3D chaotic system, Chaos, Solitons and Fractals 42 (2009) 1812-1819.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICANCM'11/ICDCC'11: Proceedings of the 2011 international conference on applied, numerical and computational mathematics, and Proceedings of the 2011 international conference on Computers, digital communications and computing
September 2011
239 pages
ISBN:9781618040305

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Stevens Point, Wisconsin, United States

Publication History

Published: 15 September 2011

Author Tags

  1. T system
  2. adaptive generalized backstepping method
  3. chaos
  4. synchronization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media