Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Hybrid digital manufacturing: : Capturing the value of digitalization

Published: 21 December 2022 Publication History

Abstract

A chasm is growing between the advanced technologies available for improving manufacturing operations and those effectively used in practice. The vision of Industry 4.0 is to mobilize industry to seek out these possibilities for improvement and to close the gap between opportunity and reality. However, when compared with more established improvement opportunities such as lean manufacturing, the digitalization of manufacturing lacks in both paradigmatic examples and an understanding of how to achieve the benefits. This lack is a complication of concern: Without an appropriate operations strategy to capture the value of digitalization, manufacturing companies will be unable to focus on technological investments and operational changes. To address this concern, operations management academics must develop new theory through active engagement in the practice of digitalization in manufacturing. This research presents a paradigmatic example, based on engaged scholarship, focused on effectively combining novel object‐interactive and conventional manufacturing syntax for benefiting from digitalization in internal operations and the wider supply chain. The contribution to literature is a novel operations strategy—hybrid digital manufacturing—for capturing the value of Industry 4.0 technologies.

References

[1]
Agrawal, S., Li, Y., Liu, J. S., Feiner, S. K., & Song, S. (2021). Scene editing as teleoperation: A case study in 6DoF kit assembly. ArXiv Preprint.
[2]
Akinc, U., & Meredith, J. R. (2015). Make‐to‐forecast: Customization with fast delivery. International Journal of Operations and Production Management, 35(5), 728–750.
[3]
Akmal, J. S., Salmi, M., Björkstrand, R., Partanen, J., & Holmström, J. (2022). Switchover to industrial additive manufacturing: Dynamic decision‐making for problematic spare parts. International Journal of Operations & Production Management, 42(13), 358–384.
[4]
Arnäs, P. O., Holmström, J., & Kalantari, J. (2013). In‐transit services and hybrid shipment control: The use of smart goods in transportation networks. Transportation Research Part C: Emerging Technologies, 36, 231–244.
[5]
Bahubalendruni, M. V. A. R., & Biswal, B. B. (2018). An intelligent approach towards optimal assembly sequence generation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(4), 531–541.
[6]
Beemsterboer, B., Land, M., Teunter, R., & Bokhorst, J. (2017). Integrating make‐to‐order and make‐to‐stock in job shop control. International Journal of Production Economics, 185, 1–10.
[7]
Bejlegaard, M., Brunoe, T., & Nielsen, K. (2018, August). A changeable jig‐less welding cell for subassembly of construction machinery. IFIP International Conference on Advances in Production Management Systems (APMS), Seoul, South Korea, pp. 305–311.
[8]
Bendoly, E., Chandrasekaran, A., Lima, M., Handfield, R., Herderick, E., Haghighat, S., McGuffin‐Cawley, J., & Roscoe, S. (2021). Of narrow windows and acrobats: COVID‐Responsiveness and knock‐ons via additive manufacturing capabilities. Retrieved November 3, 2022, from. https://ssrn.com/abstract=3882909
[9]
Berg, E. (2019). Automation of sorting and kitting from cutting tables (SAE Technical Paper No. 2019‐01‐18).
[10]
Boudella, M. E. A., Sahin, E., & Dallery, Y. (2018). Kitting optimisation in just‐in‐time mixed‐model assembly lines: Assigning parts to pickers in a hybrid robot–operator kitting system. International Journal of Production Research, 56(16), 5475–5494.
[11]
Bozer, Y. A., & McGinnis, L. F. (1992). Kitting versus line stocking: A conceptual framework and a descriptive model. International Journal of Production Economics, 28(1), 1–19.
[12]
Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies ‘engines of growth’? Journal of Econometrics, 65(1), 83–108.
[13]
Brynzer, H., & Johansson, M. I. (1995). Design and performance of kitting and order picking systems. International Journal of Production Economics, 41(1–3), 115–125.
[14]
Bueno, A., Filho, M. G., & Frank, A. G. (2020). Smart production planning and control in the Industry 4.0 context: A systematic literature review. Computers & Industrial Engineering, 149, 106774. https://doi.org/10.1016/j.cie.2020.106774
[15]
Buer, S. V., Semini, M., Strandhagen, J. O., & Sgarbossa, F. (2021). The complementary effect of lean manufacturing and digitalisation on operational performance. International Journal of Production Research, 59(7), 1976–1992.
[16]
Caputo, A. C., & Pelagagge, P. M. (2011). A methodology for selecting assembly systems feeding policy. Industrial Management & Data Systems, 111(1), 84–112.
[17]
Caputo, A. C., Pelagagge, P. M., & Salini, P. (2015). A decision model for selecting parts feeding policies in assembly lines. Industrial Management & Data Systems, 115(6), 974–1003.
[18]
Caputo, A. C., Pelagagge, P. M., & Salini, P. (2018). Selection of assembly lines feeding policies based on parts features and scenario conditions. International Journal of Production Research, 56(3), 1208–1232.
[19]
Caputo, A. C., Pelagagge, P. M., & Salini, P. (2021). A model for planning and economic comparison of manual and automated kitting systems. International Journal of Production Research, 59(3), 885–908.
[20]
Chang, S. H., Pai, P. F., Yuan, K. J., Wang, B. C., & Li, R. K. (2003). Heuristic PAC model for hybrid MTO and MTS production environment. International Journal of Production Economics, 85(3), 347–358.
[21]
Chaudhuri, A., Gerlich, H. A., Jayaram, J., Ghadge, A., Shack, J., Brix, B. H., Hoffbeck, L. H., & Ulriksen, N. (2021). Selecting spare parts suitable for additive manufacturing: A design science approach. Production Planning and Control, 32(8), 670–687.
[22]
Cifone, F. D., Hoberg, K., Holweg, M., & Staudacher, A. P. (2021). Lean 4.0′: How can digital technologies support lean practices? International Journal of Production Economics, 241, 198258.
[23]
Cimino, C., Negri, E., & Fumagalli, L. (2019). Review of digital twin applications in manufacturing. Computers in Industry, 113, 103130.
[24]
Comand, N., Minto, R., Boschetti, G., Faccio, M., & Rosati, G. (2019). Optimization of a kitting line: A case study. Robotics, 8(3), 70.
[25]
Derigent, W., Cardin, O., & Trentesaux, D. (2021). Industry 4.0: Contributions of holonic manufacturing control architectures and future challenges. Journal of Intelligent Manufacturing, 32(7), 1797–1818.
[26]
Derler, P., Lee, E. A., & Sangiovanni Vincentelli, A. (2011). Modeling cyber‐physical systems. Proceedings of the IEEE, 100(1), 13–28.
[27]
Engström, T., Jonsson, D., & Medbo, L. (1998). The Volvo Uddevalla plant and interpretations of industrial design processes. Integrated Manufacturing Systems, 9(5), 279–295.
[28]
Fansuri, A. F. H., Rose, A. N. M., Mohamed, N. N., & Ahmad, H. (2017). The challenges of lean manufacturing implementation in kitting assembly. In IOP Conference Series: Materials science and engineering (012069). IOP Publishing.
[29]
Främling, K., Ala‐Risku, T., Kärkkäinen, M., & Holmström, J. (2007). Design patterns for managing product life cycle information. Communications of the ACM, 50(6), 75–79.
[30]
Främling, K., Holmström, J., Ala‐Risku, T., & Kärkkäinen, M. (2003). Product agents for handling information about physical objects (Vol. 153). Helsinki University of Technology.
[31]
Friedrich, A., Lange, A., & Elbert, R. (2022). Supply chain design for industrial additive manufacturing. International Journal of Operations & Production Management. https://doi.org/10.1108/IJOPM-12-2021-0802
[32]
Gustafsson, E., Jonsson, P., & Holmström, J. (2019). Digital product fitting in retail supply chains: Maturity levels and potential outcomes. Supply Chain Management: An International Journal, 24(5), 574–589.
[33]
Hanson, R., & Brolin, A. (2013). A comparison of kitting and continuous supply in in‐plant materials supply. International Journal of Production Research, 51(4), 979–992.
[34]
Hanson, R., & Medbo, L. (2012). Kitting and time efficiency in manual assembly. International Journal of Production Research, 50(4), 1115–1125.
[35]
Harris, G. A., Abernathy, D., Lu, L., Hyre, A., & Vinel, A. (2021). Bringing clarity to issues with adoption of digital manufacturing capabilities: An analysis of multiple independent studies. Journal of the Knowledge Economy, 13, 2868–2889. https://doi.org/10.1007/s13132-021-00832-8
[36]
Hedenstierna, C. P. T., Disney, S. M., Eyers, D. R., Holmström, J., Syntetos, A. A., & Wang, X. (2019). Economies of collaboration in build‐to‐model operations. Journal of Operations Management, 65(8), 753–773.
[37]
Heinen, J. J., & Hoberg, K. (2019). Assessing the potential of additive manufacturing for the provision of spare parts. Journal of Operations Management, 65(8), 810–826.
[38]
Helo, P., Hao, Y., Toshev, R., & Boldosova, V. (2021). Cloud manufacturing ecosystem analysis and design. Robotics and Computer‐Integrated Manufacturing, 67, 102050. https://doi.org/10.1016/J.RCIM.2020.102050
[39]
Högel, R. (2017). Next generation of jigless robot welding. Laser Technik Journal, 14(4), 39–41.
[40]
Holmström, J., Holweg, M., Lawson, B., Pil, F. K., & Wagner, S. M. (2019). The digitalization of operations and supply chain management: Theoretical and methodological implications. Journal of Operations Management, 65(8), 728–734.
[41]
Holmström, J., Ketokivi, M., & Hameri, A.‐P. (2009). Bridging practice and theory: A design science approach. Decision Sciences, 40(1), 65–87.
[42]
Holmström, J., Liotta, G., & Chaudhuri, A. (2017). Sustainability outcomes through direct digital manufacturing‐based operational practices: A design theory approach. Journal of Cleaner Production, 167, 951–961.
[43]
Holmström, J., Partanen, J., Tuomi, J., & Walter, M. (2010). Rapid manufacturing in the spare parts supply chain. Journal of Manufacturing Technology Management, 21(6), 687–697.
[44]
Holmström, J., Tenhiälä, A., & Kärkkäinen, M. (2011). Item dwell time in project inventories: A field experiment. Computers in Industry, 62(1), 99–106.
[45]
Hu, Z., Ramaraj, G., & Hu, G. (2020). Production planning with a two‐stage stochastic programming model in a kitting facility under demand and yield uncertainties. International Journal of Management Science and Engineering Management, 15(3), 237–246.
[46]
Hua, S. Y., & Johnson, D. J. (2010). Research issues on factors influencing the choice of kitting versus line stocking. International Journal of Production Research, 48(3), 779–800.
[47]
Jiang, Z., Yuan, S., Ma, J., & Wang, Q. (2022). The evolution of production scheduling from Industry 3.0 through Industry 4.0. International Journal of Production Research, 60(11), 3534–3554.
[48]
Johansson, M. I., & Johansson, B. (1990). High automated kitting systems for small parts: A case study from the Uddevalla plant. In Proceedings of the 23rd International Symposium on Automotive Technology and Automation (pp. 75–82). Automotive Automation.
[49]
Kalantari, M., Rabbani, M., & Ebadian, M. (2011). A decision support system for order acceptance/rejection in hybrid MTS/MTO production systems. Applied Mathematical Modelling, 35(3), 1363–1377.
[50]
Khajavi, S. H., Baumers, M., Holmström, J., Özcan, E., Atkin, J., Jackson, W., & Li, W. (2018). To kit or not to kit: Analysing the value of model‐based kitting for additive manufacturing. Computers in Industry, 98, 100–117.
[51]
Khajavi, S. H., Partanen, J., Holmström, J., & Tuomi, J. (2015). Risk reduction in new product launch: A hybrid approach combining direct digital and tool‐based manufacturing. Computers in Industry, 74, 29–42.
[52]
Kootbally, Z., Schlenoff, C., Antonishek, B., Proctor, F., Kramer, T., Harrison, W., Downs, A., & Gupta, S. (2018). Enabling robot agility in manufacturing kitting applications. Integrated Computer‐Aided Engineering, 25(2), 193–212.
[53]
Lin, J., & Naim, M. M. (2019). Why do nonlinearities matter? The repercussions of linear assumptions on the dynamic behaviour of assemble‐to‐order systems. International Journal of Production Research, 57(20), 6424–6451.
[54]
Lindberg, C., & Stark, A. (2018). Method, transport device and system for material handling. WIPO.
[55]
Lyly‐Yrjänäinen, J., Holmström, J., Johansson, M. I., & Suomala, P. (2016). Effects of combining product‐centric control and direct digital manufacturing: The case of preparing customized hose assembly kits. Computers in Industry, 82, 82–94.
[56]
Machado, C. G., Winroth, M., Carlsson, D., Almström, P., Centerholt, V., & Hallin, M. (2019). Industry 4.0 readiness in manufacturing companies: Challenges and enablers towards increased digitalization. Procedia CIRP, 81, 1113–1118.
[57]
Maderna, R., Poggiali, M., Zanchettin, A. M., & Rocco, P. (2020). An online scheduling algorithm for human‐robot collaborative kitting. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 11430–11435). IEEE.
[58]
Mattila, J., Seppälä, T., Valkama, P., Hukkinen, T., Främling, K., & Holmström, J. (2021). Blockchain‐based deployment of product‐centric information systems. Computers in Industry, 125, 103342.
[59]
McCracken, D. D., & Reilly, E. D. (2003). Backus–Naur form (BNF). Encyclopedia of Computer Science (pp. 129–131). John Wiley and Sons Ltd.
[60]
Meredith, J., & Akinc, U. (2007). Characterizing and structuring a new make‐to‐forecast production strategy. Journal of Operations Management, 25(3), 623–642.
[61]
Meyer, G. G., Wortmann, J. C., & Szirbik, N. B. (2011). Production monitoring and control with intelligent products. International Journal of Production Research, 49(5), 1303–1317.
[62]
Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium‐sized enterprises (SMEs). Journal of Manufacturing Systems, 49, 194–214.
[63]
Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber‐physical systems in manufacturing. CIRP Annals, 65(2), 621–641.
[64]
Musa, A., Gunasekaran, A., & Yusuf, Y. (2014). Supply chain product visibility: Methods, systems and impacts. Expert Systems with Applications, 41(1), 176–194.
[65]
Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital innovation management: Reinventing innovation management research in a digital world. MIS Quarterly, 41(1), 223–238.
[66]
Öhman, M., Hiltunen, M., Virtanen, K., & Holmström, J. (2021). Frontlog scheduling in aircraft line maintenance: From explorative solution design to theoretical insight into buffer management. Journal of Operations Management, 67(2), 120–151.
[67]
O'Reilly, S., Kumar, A., & Adam, F. (2015). The role of hierarchical production planning in food manufacturing SMEs. International Journal of Operations and Production Management, 35(10), 1362–1385.
[68]
Parente, M., Figueira, G., Amorim, P., & Marques, A. (2020). Production scheduling in the context of Industry 4.0: Review and trends. International Journal of Production Research, 58(17), 5401–5431.
[69]
Peeters, K., & van Ooijen, H. (2020). Hybrid make‐to‐stock and make‐to‐order systems: A taxonomic review. International Journal of Production Research, 58(15), 4659–4688.
[70]
Perona, M., Saccani, N., & Zanoni, S. (2009). Combining make‐to‐order and make‐to‐stock inventory policies: An empirical application to a manufacturing SME. Production Planning and Control, 20(7), 559–575.
[71]
Ramírez, J. D., Vera, P. P., & Martínez, A. G. (2018). Improvement of material supply system through kitting concept and IT solutions. In Proceedings of the North American Conference in Industrial Engineering and Operations Management (pp. 695–704). IEOM Society.
[72]
Romsdal, A., Strandhagen, J. O., & Dreyer, H. C. (2014). Can differentiated production planning and control enable both responsiveness and efficiency in food production? International Journal on Food System Dynamics, 5(1), 34–43.
[73]
Rönkkö, M., Kärkkäinen, M., & Holmström, J. (2007). Benefits of an item‐centric enterprise‐data model in logistics services: A case study. Computers in Industry, 58(8–9), 814–822.
[74]
Rosochowski, A., & Matuszak, A. (2000). Rapid tooling: The state of the art. Journal of Materials Processing Technology, 106(1–3), 191–198.
[75]
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 9(1), 54–89.
[76]
Sellers, C. J., & Nof, S. Y. (1989). Performance analysis of robotic kitting systems. Robotics and Computer‐Integrated Manufacturing, 6(1), 15–24.
[77]
Sierla, S., Kyrki, V., Aarnio, P., & Vyatkin, V. (2018). Automatic assembly planning based on digital product descriptions. Computers in Industry, 97, 34–46.
[78]
Soman, C. A., Van Donk, D. P., & Gaalman, G. (2004). Combined make‐to‐order and make‐to‐stock in a food production system. International Journal of Production Economics, 90(2), 223–235.
[79]
Soman, C. A., van Donk, D. P., & Gaalman, G. J. C. (2007). Capacitated planning and scheduling for combined make‐to‐order and make‐to‐stock production in the food industry: An illustrative case study. International Journal of Production Economics, 108(1–2), 191–199.
[80]
Stark, A. (2018). Arrangement and system for distribution of components to sets of material. Retrieved from. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011071443
[81]
Stark, A., & Lindberg, C. (2020). A die for bending sheet metal, use of such a die, system comprising such a die and method of bending sheet metal. WIPO.
[82]
Stewart, G. (1997). Supply‐chain operations reference model (SCOR): The first cross‐industry framework for integrated supply‐chain management. Logistics Information Management, 10(2), 62–67.
[83]
Tamaki, K., & Nof, S. Y. (1991). Design method of robot kitting sytem for flexible assemble. Robotics and Autonomous Systems, 8(4), 255–273.
[84]
Tuck, C. J., Hague, R. J. M., Ruffo, M., Ransley, M., & Adams, P. (2008). Rapid manufacturing facilitated customization. International Journal of Computer Integrated Manufacturing, 21(3), 245–258.
[85]
van de Ven, A. H., & Johnson, P. E. (2006). Knowledge for theory and practice. Academy of Management Review, 31(4), 802–821.
[86]
Van Lamsweerde, A., & Letier, E. (2002). From object orientation to goal orientation: A paradigm shift for requirements engineering. In International Workshop on Radical Innovations of Software and Systems Engineering in the Future (pp. 325–340). Springer.
[87]
vom Brocke, J., Weber, M., & Grisold, T. (2021). Design science research of high practical relevance. In Engineering the transformation of the enterprise (pp. 115–135). Springer.
[88]
Vujosevic, R., Ramirez, J. A., Hausman‐Cohen, L., & Venkataraman, S. (2012). Lean kitting: A case study.
[89]
Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications of the ACM, 40(5), 80–92.
[90]
Yan, X., & Gu, P. (1996). A review of rapid prototyping technologies and systems. Computer‐Aided Design, 28(4), 307–318.
[91]
Zhang, Z. G., Kim, I., Springer, M., Cai, G., & Yu, Y. (2013). Dynamic pooling of make‐to‐stock and make‐to‐order operations. International Journal of Production Economics, 144(1), 44–56.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Operations Management
Journal of Operations Management  Volume 69, Issue 6
September 2023
176 pages
ISSN:0272-6963
EISSN:1873-1317
DOI:10.1002/joom.v69.6
Issue’s Table of Contents
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 21 December 2022

Author Tags

  1. digitalization
  2. direct digital kitting
  3. hybrid digital manufacturing
  4. Industry 4.0
  5. manufacturing syntax
  6. object‐interactive syntax
  7. operations strategy

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media