Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

When Can Splits be Drawn in the Plane?

Published: 01 January 2017 Publication History

Abstract

Split networks are a popular tool for the analysis and visualization of complex evolutionary histories. Every collection of splits (bipartitions) of a finite set can be represented by a split network. Here we characterize which collection of splits can be represented using a planar split network. Our main theorem links these collections of splits with oriented matroids and arrangements of lines separating points in the plane. As a consequence of our main theorem, we establish a particularly simple characterization of maximal collections of these splits.

References

[1]
M. Balvočiūtė, A. Spillner, and V. Moulton, FlatNJ: A novel network-based approach to visualize evolutionary and biogeographical relationships, Syst. Biol., 63 (2014), pp. 383--396.
[2]
A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented Matroids, Cambridge University Press, New York, 1999.
[3]
J. Bohne, Eine kombinatorische Analyse zonotopaler Raumaufteilungen, Ph.D. thesis, Bielefeld University, Bielefeld, Germany, 1992.
[4]
D. Bryant and A. Dress, Linearly independent split systems, European J. Combin., 28 (2007), pp. 1814--1831.
[5]
D. Bryant and V. Moulton, Neighbor-net: An agglomerative method for the construction of phylogenetic networks, Mol. Biol. Evol., 21 (2004), pp. 255--265.
[6]
P. Buneman, The recovery of trees from measures of dissimilarity, in Mathematics in the Archaeological and Historical Sciences, D. G. Kendall, F. R. Hodson, and P. Tautu, ed., Edinburgh University Press, Edinburgh, 1971, pp. 387--395.
[7]
D. v. Djoković, Distance-preserving subgraphs of hypercubes, J. Combin. Theory Ser. B, 14 (1973), pp. 263--267.
[8]
A. Dress and D. Huson, Constructing splits graphs, IEEE/ACM Trans. Comput. Biol. Bioinform., 1 (2004), pp. 109--115.
[9]
D. Eppstein, Algorithms for drawing media, in Graph Drawing, J. Pach, ed., Lecture Notes in Comput. Sci. 3383, Springer, Berlin, 2005, pp. 173--183.
[10]
D. Eppstein, J.-C. Falmagne, and S. Ovchinnikov, Media Theory, Springer, Berlin, 2008.
[11]
S. Felsner, Geometric Graphs and Arrangements, Vieweg, Wiesbaden, Germany, 2004.
[12]
S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Appl. Math., 109 (2001), pp. 67--94.
[13]
J. Folkman and J. Lawrence, Oriented matroids, J. Combin. Theory Ser. B, 25 (1978), pp. 199--236.
[14]
B. Gärtner and E. Welzl, Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements, Discrete Comput. Geom. 12 (1994), pp. 399--432.
[15]
J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A, 29 (1980), pp. 220--235.
[16]
J. E. Goodman and R. Pollack, A theorem of ordered duality, Geom. Dedicata, 12 (1982), pp. 63--74.
[17]
S. Grünewald, K. Forslund, A. Dress, and V. Moulton, QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets, Mol. Biol. Evol., 24 (2007), pp. 532--538.
[18]
K. Handa, A characterization of oriented matroids in terms of topes, European J. Combin., 11 (1990), pp. 41--45.
[19]
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd ed., Springer, New York, 2009.
[20]
D. Huson and D. Bryant, Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 23 (2006), pp. 254--267.
[21]
D. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks, Cambridge University Press, New York, 2010.
[22]
M. Las Vergnas, Matroïdes Orientables, C. R. Acad. Sci. Paris, 280 (1975), pp. 61--64.
[23]
F. Levi, Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig, 78 (1926), pp. 256--267.
[24]
J. Richter-Gebert and G. M. Ziegler, Zonotopal tilings and the Bohne-Dress Theorem, in Jerusalem Combinatorics, AMS, Providence, RI, 1994, pp. 211--232.
[25]
C. Semple and M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003.
[26]
P. Shor, Stretchability of pseudoline arrangements is NP-hard, in Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, American Math. Soc., Providence, RI, 1991, pp. 531--554.
[27]
A. Spillner, B. Nguyen, and V. Moulton, Constructing and drawing regular planar split networks, IEEE/ACM Trans. Comput. Biol. Bioinform., 9 (2012), pp. 395--407.
[28]
R. Wetzel, Zur Visualisierung abstrakter Ähnlichkeitsbeziehungen, Ph.D. thesis, Bielefeld University, Bielefeld, Germany, 1995.
[29]
T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., 1 (1975), pp. 1--102.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 31, Issue 2
DOI:10.1137/sjdmec.31.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. splits
  2. split networks
  3. oriented matroids
  4. phylogenetics

Author Tags

  1. 92B10
  2. 52C30
  3. 05C90
  4. 52C40

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media