Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Out-of-core tensor approximation of multi-dimensional matrices of visual data

Published: 01 July 2005 Publication History

Abstract

Tensor approximation is necessary to obtain compact multilinear models for multi-dimensional visual datasets. Traditionally, each multi-dimensional data item is represented as a vector. Such a scheme flattens the data and partially destroys the internal structures established throughout the multiple dimensions. In this paper, we retain the original dimensionality of the data items to more effectively exploit existing spatial redundancy and allow more efficient computation. Since the size of visual datasets can easily exceed the memory capacity of a single machine, we also present an out-of-core algorithm for higher-order tensor approximation. The basic idea is to partition a tensor into smaller blocks and perform tensor-related operations blockwise. We have successfully applied our techniques to three graphics-related data-driven models, including 6D bidirectional texture functions, 7D dynamic BTFs and 4D volume simulation sequences. Experimental results indicate that our techniques can not only process out-of-core data, but also achieve higher compression ratios and quality than previous methods.

Supplementary Material

MP4 File (pps016.mp4)

References

[1]
Brand, M. 2002. Incremental singular value decomposition of uncertain data with missing values. In Proc. European Conference on Computer Vision (Vol. 1), 707--720.
[2]
Chen, W.-C., Bouguet, J.-Y., Chu, M., and Grzeszczuk, R. 2002. Light field mapping: Efficient representation and hardware rendering of surface light fields. ACM Transactions on Graphics 21, 3, 447--456.
[3]
Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real world surfaces. ACM Transactions on Graphics 18, 1, 1--34.
[4]
Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics 21, 3, 736--744.
[5]
Furukawa, R., Kawasaki, H., Ikeuchi, K., and Sakauchi, M. 2002. Appearance based object modeling using texture database: Acquisition, compression, and rendering. In 13th Eurographics Workshop on Rendering, 257--265.
[6]
Gu, X., Gortler, S., and Hoppe, H. 2002. Geometry images. ACM Transactions on Graphics 21, 3, 355--361.
[7]
Han, J., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Transactions on Graphics 22, 3, 741--748.
[8]
James, D., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. ACM TOG 22, 3, 879--887.
[9]
Koudelka, M., Magda, S., Belhumeur, P., and Kriegman, D. 2003. Acquisition, compression, and synthesis of bidirectional texture functions. In 3rd Intl. Workshop on Texture Analysis and Synthesis, 59--64.
[10]
Kroonenberg, P., and de Leeuw, J. 1980. Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45, 324--1342.
[11]
Lathauwer, L. D., De Moor, B., and Vandewalle, J. 2000. A multilinear singular value decomposition. SIAM J. Matrix Analysis and Applications 21, 4, 1253--1278.
[12]
Lathauwer, L. D., de Moor, B., and Vandewalle, J. 2000. On the best rank-1 and rank-(R1, R2, .., Rn) approximation of higher-order tensors. SIAM J. Matrix Analysis and Applications 21, 4, 1324--1342.
[13]
Leung, T., and Malik, J. 1999. Recognizing surfaces using three dimensional textons. In Intl. Conf. Computer Vision.
[14]
Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Computer Graphics Proceedings, Annual Conference Series, 31--42.
[15]
Liu, X., Yu, Y., and Shum, H.-Y. 2001. Synthesizing bidirectional texture functions for real-world surfaces. In Proceedings of SIGGRAPH, 97--106.
[16]
Liu, X., Hu, Y., Zhang, J., Tong, X., Guo, B., and Shum, H.-Y. 2004. Synthesis and rendering of bidirectional texture functions on arbitrary surfaces. IEEE Trans. Visualization and Computer Graphics 10, 3, 278--289.
[17]
Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics 22, 3, 759--769.
[18]
Nguyen, K., and Saupe, D. 2001. Rapid high quality compression of volume data for visualization. Compuer Graphics Forum 20, 3, 49--56.
[19]
Nishino, K., Sato, Y., and Ikeuchi, K. 1999. Eigen-texture method: appearance compression based on 3d model. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'99), 618--624.
[20]
Rabani, E., and Toledo, S. 2001. Out-of-core svd and qr decompositions. In Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing.
[21]
Rodler, F. 1999. Wavelet based 3d compression with fast random access for very large volume data. In Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, 108--117.
[22]
Sattler, M., Sarlette, R., and Klein, R. 2003. Efficient and realistic visualization of cloth. In Proc. Eurographics Symposium on Rendering, 167--177.
[23]
Shashua, A., and Levin, A. 2001. Linear image regression and classification using the tensor-rank principle. In IEEE Conf. Computer Vision and Pattern Recognition.
[24]
Shi, L., and Yu, Y. 2005. Controllable smoke animation with guiding objects. ACM Transactions on Graphics 24, 1, 140--164.
[25]
Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., and Shum, H.-Y. 2002. Synthesis of bidirectional texture functions on arbitrary surfaces. In SIGGRAPH 2002 Proceedings, 665--672.
[26]
Tucker, L. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279--311.
[27]
Vasilescu, M. A. O., and Terzopoulos, D. 2002. Multilinear analysis of image ensembles: Tensorfaces. In European Conference on Computer Vision, 447--460.
[28]
Vasilescu, M., and Terzopoulos, D. 2004. Tensortextures: Multilinear image-based rendering. ACM Transactions on Graphics 23, 3, 334--340.
[29]
Wang, H., and Ahuja, N. 2003. Facial expression decomposition. In Int. Conf. on Computer Vision, 958--965.
[30]
Weyrich, T., Pfister, H., and Gross, M. 2005. Rendering deformable surface reflectance fields. IEEE Trans. Visualization and Computer Graphics 11, 1, 48--58.
[31]
Yang, J., Zhang, D., Frangi, A., and Yang, J. 2004. Two-dimensional pca: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1 (January).
[32]
Ye, J. 2004. Generalized low rank approximations of matrices. In International Conference on Machine Learning, ICML'04.
[33]
Yeo, B.-L., and Liu, B. 1995. Volume rendering of dct-based compressed 3d scalar data. IEEE Trans. Visualization and Computer Graphics 1, 1, 29--43.
[34]
Yu, Y., and Chang, J. 2005. Shadow graphs and 3d texture reconstruction. International Journal of Computer Vision 62, 1/2, 35--60.

Cited By

View all
  • (2024)HMK-CTA: A Hierarchical Multidimensional Representation for Visual DatasetsProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670954(1-10)Online publication date: 3-Jun-2024
  • (2024)Quantum computing and neuroscience for 6G/7G networks: SurveyIntelligent Systems with Applications10.1016/j.iswa.2024.20034623(200346)Online publication date: Sep-2024
  • (2021)Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0)Geoscientific Model Development10.5194/gmd-14-875-202114:2(875-887)Online publication date: 11-Feb-2021
  • Show More Cited By

Index Terms

  1. Out-of-core tensor approximation of multi-dimensional matrices of visual data

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 24, Issue 3
      July 2005
      826 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1073204
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 July 2005
      Published in TOG Volume 24, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. bidirectional texture functions
      2. block-based partitioning
      3. multilinear models
      4. spatial coherence
      5. volume simulations

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)9
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 24 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)HMK-CTA: A Hierarchical Multidimensional Representation for Visual DatasetsProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670954(1-10)Online publication date: 3-Jun-2024
      • (2024)Quantum computing and neuroscience for 6G/7G networks: SurveyIntelligent Systems with Applications10.1016/j.iswa.2024.20034623(200346)Online publication date: Sep-2024
      • (2021)Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0)Geoscientific Model Development10.5194/gmd-14-875-202114:2(875-887)Online publication date: 11-Feb-2021
      • (2021)GenSSS: a genetic algorithm for measured subsurface scattering representationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-020-01800-037:2(307-323)Online publication date: 1-Feb-2021
      • (2021)Tensor Approximation for Multidimensional and Multivariate DataAnisotropy Across Fields and Scales10.1007/978-3-030-56215-1_4(73-98)Online publication date: 11-Feb-2021
      • (2020)An Approximate Communication Framework for Network-on-ChipsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2020.296806831:6(1434-1446)Online publication date: 1-Jun-2020
      • (2020)Interactive spatio-temporal exploration of massive time-Varying rectilinear scalar volumes based on a variable bit-rate sparse representation over learned dictionariesComputers & Graphics10.1016/j.cag.2020.03.002Online publication date: Mar-2020
      • (2019)Relative error tensor low rank approximationProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310607(2772-2789)Online publication date: 6-Jan-2019
      • (2019)Tensor Discriminant Analysis via Compact Feature Representation for Hyperspectral Images Dimensionality ReductionRemote Sensing10.3390/rs1115182211:15(1822)Online publication date: 4-Aug-2019
      • (2019)A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field VideosACM Transactions on Graphics10.1145/326998038:3(1-18)Online publication date: 17-May-2019
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media