Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/582034.582057acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article

Parallel interval-Newton using message passing: dynamic load balancing strategies

Published: 10 November 2001 Publication History

Abstract

Branch-and-prune and branch-and-bound techniques are commonly used for intelligent search in finding all solutions, or the optimal solution, within a space of interest. The corresponding binary tree structure provides a natural parallelism allowing concurrent evaluation of subproblems using parallel computing technology. Of special interest here are techniques derived from interval analysis, in particular an interval-Newton/generalized-bisection procedure. In this context, we discuss issues of load balancing and work scheduling that arise in the implementation of parallel interval-Newton on a cluster of workstations using message passing, and describe and analyze techniques for this purpose. Results using an asynchronous diffusive load balancing strategy show that a consistently high efficiency can be achieved in solving nonlinear equations, providing excellent scalability, especially with the use of a two-dimensional torus virtual network. The effectiveness of the approach used, especially in connection with a novel stack management scheme, is also demonstrated in the consistent superlinear speedups observed in performing global optimization.

References

[1]
Adjiman, C. S., Androulakis, I. P. & Floudas, C. A. (2000) Global optimization of mixed-integer nonlinear problems. AIChE J.,46, 1769.
[2]
Androulakis, I.P. & Floudas, C. A. (1998) Distributed branch and bound algorithms for global optimization. In Parallel Processing of Discrete Problems, ed. P. M. Pardalos, Springer-Verlag, Berlin.
[3]
Anstreicher, K. M., Brixius, N., Goux, J.-P. & Linderoth, J. (2000) Solving large quadratic assignment problems on computational grids. Presented at 17th International Symposium on Mathematical Programming, Atlanta, GA, August.
[4]
Balaji, G. V. & Seader, J. D. (1995) Application of interval-Newton method to chemical engineering problems. AIChE Symp. Ser.,91(304), 364.
[5]
Blumofe, R. D. & Leiserson, C. E. (1994) Scheduling multithreaded computations by work stealing. In Proceedings 35th Annual Symposium on Foundations of Computer Science, ed. S. Goldwasser, IEEE Computer Society Press, Los Alamitos, CA.
[6]
Blumofe, R. D. & Leiserson, C. E. (1999) Scheduling multithreaded computations by work stealing. J. ACM,46, 720.
[7]
Byrne, R. P. & Bogle, I. D. L. (2000) Global optimization of modular process flowsheets. Ind. Eng. Chem. Res.,39, 4296.
[8]
Clausen, J. & Traff, J. L. (1991) Implementations of parallel branch-and-bound algorithms-experience with the graph partitioning problem. Anns. Opns. Res.,33, 331.
[9]
Correa, R. C. (2000) A parallel approximation scheme for the multiprocessor scheduling problem. Parallel Computing,26, 47.
[10]
Correa, R. & Ferreira, A. (1996) Parallel best-first branch-and-bound in discrete optimization: A framework. In Solving Combinatorial Optimization Problems in Parallel, eds. A. Ferreira, & P. Pardalos, Springer-Verlag, Berlin.
[11]
Cybenko, G. (1989) Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distr. Comp.,7, 278.
[12]
Dijkstra, E. W., Feijen, W. H. & van Gasteren, A. J. M. (1983) Derivation of a termination detection algorithm for distributed computations. Inf. Process. Lett.,16, 217.
[13]
Dijkstra, E. W. & Scholten, C. S. (1980) Termination detection for diffusing computations. Inf. Process. Lett.,11, 1.
[14]
Epperly, T. G. W. (1995) Global Optimization of Nonconvex Nonlinear Programs Using Parallel Branch and Bound. Ph.D. Thesis, University of Wisconsin, Madison, WI.
[15]
Finkel, R. & Manber, U. (1987) DIB-A distributed implementation of backtracking. ACM Tran. Prog. Lang. and Syst.,9, 235.
[16]
Foster, I. (1995) Designing and Building Parallel Programs --- Concepts and Tools for Parallel Software Engineering. Addison-Wesley, Reading, MA.
[17]
Frommer, A. & Mayer, G. (1989) Parallel interval multisplittings. Numer. Math.,56, 255.
[18]
Gan, Q., Yang, Q. & Hu, C. (1994) Parallel all-row preconditioned interval linear solver for nonlinear equations on multiprocessors. Parallel Computing,20, 1249.
[19]
Gau, C.-Y. & Stadtherr, M. A. (1998) Global nonlinear parameter estimation using interval analysis: Parallel computing strategies. Presented at AIChE Annual Meeting, Miami Beach, FL, November.
[20]
Gau, C.-Y. & Stadtherr, M. A. (2000) Reliable nonlinear parameter estimation using interval analysis: Error-in-variable approach. Comput. Chem. Eng.,24, 631.
[21]
Gendron, B. & Crainic, T. G. (1994) Parallel branch-and-bound algorithms-survey and synthesis. Oper. Res.,42, 1042.
[22]
Goux, J.-P., Kulkani, S., Linderoth, J. & Yoder, M. (2000) An enabling framework for master-worker computing applications on the computational grid. Technical Report, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL.
[23]
Gropp, W., Lusk, E. & Skjellum, A. (1994) Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, Cambridge, MA.
[24]
Gropp, W., Lusk, E. & Thakur, R. (1999) Using MPI-2: Advanced Features of the Message-Passing Interface. MIT Press, Cambridge, MA.
[25]
Han, J. R., Manousiousthakis, V. & Choi, S. H. (1997) Global optimization of chemical processes using the interval analysis. Korean J. Chem. Eng.,14, 270.
[26]
Hansen, E. R. (1992). Global Optimization Using Interval Analysis, Marcel Dekkar, New York, NY.
[27]
Harding, S. T., Maranas, C. D., McDonald, C. M. & Floudas, C. A. (1997) Locating all homogeneous azeotropes in multicomponent mixtures. Ind. Eng. Chem. Res.,36, 160.
[28]
Harding, S. T. & Floudas, C. A. (2000) Locating all heterogeneous and reactive azeotropes in multicomponent mixtures. Ind. Eng. Chem. Res.,39, 1576.
[29]
Heirich, A. & Arvo, J. (1998) A competitive analysis of load balancing strategies for parallel ray tracing. J. Supercomputing,12, 57.
[30]
Heirich, A. & Taylor, S. (1995) Load balancing by diffusion. In Proceedings 24th International Conference on Parallel Programming, Vol. 3, CRC Press, Boca Raton, FL.
[31]
Hu, C. (1996) Parallel solutions for large-scale general sparse nonlinear systems of equations. J. Comput. Sci. Tech.,11, 257.
[32]
Hu, C., Frolov, A., Kearfott, R. B. & Yang, Q. (1995) A general iterative sparse linear solver and its parallelization for interval Newton methods. Reliable Computing,1, 251.
[33]
Kanal, L. N. & Kumar, V. (1988) Search in Artificial Intelligence. Springer-Verlag, New York, NY.
[34]
Kearfott, R. B. (1996). Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands.
[35]
Klepeis, J. L. & Floudas, C. A. (2000) Deterministic global optimization and torsion angle dynamics for molecular structure prediction. Comput. Chem. Eng.,24, 1761.
[36]
Kumar. V., Grama, A., Gupta, A. & Karypis, G. (1994) Introduction to Parallel Computing: Design and Analysis of Parallel Algorithms. Benjamin-Cummings, Redwood City, CA.
[37]
Luling, R. & Monien, B. (1989) Two strategies for solving the vertex cover problem on a transputer network. Lect. Notes in Comp. Sci.,392, 160.
[38]
McDonald, C.M. & Floudas, C. A. (1997) GLOPEQ: A new computational tool for the phase and chemical equilibrium problem. Comput. Chem. Eng.21, 1.
[39]
McKeown, G. P., Rayward-Smith, V. J. & Rush, S. A. (1992) Parallel branch-and-bound. In Advances in Parallel Algorithms, eds. L. Kronsj & D. Shumsheruddin, Halsted Press, New York.
[40]
McKinnon, K. I. M., Millar, C. G. & Mongeau M. (1996) Global optimization for the chemical and phase equilibrium problem using interval analysis. In State of the Art in Global Optimization: Computational Methods and Applications, eds. C. A. Floudas & P. M. Pardalos, Kluwer Academic Publishers, Dordrecht, The Netherlands.
[41]
Mitra, G., Hai, I. & Hajian, M. T. (1997) A distributed processing algorithm for solving integer problems using a cluster of workstations. Parallel Computing,23, 733.
[42]
Neumaier, A. (1990). Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, UK.
[43]
Pardalos, P. M. & Rodgers, G. P. (1990) Parallel branch-and-bound algorithms for quadratic zero-one programming on a hypercube architecture. Anns. Opns. Res.,22, 271.
[44]
Quinn, M. J.: Analysis and implementation of branch-and-bound algorithms on a hypercube multicomputer. IEEE Trans. Comp.,39, 384.
[45]
Rao, V. N. & Kumar, V. (1987) Parallel depth first search. 1. implementation. Int. J. Paral. Prog.,16, 479.
[46]
Rump, S. M. (1999) Fast and parallel interval arithmetic. BIT,39, 534.
[47]
Rushmeier, R. A. (1993) Experiments with parallel branch-and-bound algorithms for the set covering problems. Oper. Res. Lett.,13, 277.
[48]
Schnepper, C. A. & Stadtherr, M. A. (1993) Application of a parallel interval Newton/generalized bisection algorithm to equation-based chemical process flowsheeting. Interval Computing,1993(4), 40.
[49]
Schnepper, C. A. & Stadtherr, M. A. (1996) Robust process simulation using interval methods. Comput. Chem. Eng.,20, 187.
[50]
Sinha, M., Achenie, L. E. K. & Ostrovsky, G. M. (1999) Parallel branch and bound global optimizer for product design. Presented at AIChE Annual Meeting, Dallas, TX, November.
[51]
Smith, E. M. B. & Pantelides, C. C. (1999) A symbolic reformulation/spatial branch-and-bound algorithm for the global optimization of nonconvex MINLPs. Comput. Chem. Eng.,23, 457.
[52]
Stradi, B. A., Brennecke, J. F., Kohn, J. P. & Stadtherr, M. A. (2001) Reliable computation of mixture critical points. AIChE J,47, 212.
[53]
Subrahmanyam, S., Kudva, G. K., Bassett, M. H. & Pekny, J. F. (1996) Application of distributed computing to batch plant design and scheduling. AIChE J.,42, 1648.
[54]
Teng, S. (1990) Adaptive parallel algorithms for integral knapsack problems. J. Parallel Distr. Comp.,8, 400.
[55]
Troya, J. & Ortega, M. (1989) A study of parallel branch-and-bound algorithms with best-bound-first search. Parallel Computing,11, 121.
[56]
Vornberger, O. (1986) Implementing branch-and-bound in a ring of processors. Lect. Notes in Comp. Sci.,237, 157. 157-164
[57]
Vornberger, O. (1987) Load balancing in a network of transputers. Lect. Notes in Comp. Sci.,312, 116.
[58]
Xu, G., Scurto, A. M., Castier, M., Brennecke, J. F. & Stadtherr, M. A. (2000) Reliable computation of high pressure solid-fluid equilibrium. Ind. Eng. Chem. Res.,39, 1624.

Cited By

View all
  • (2022)Interval Constraint Satisfaction: Towards Edge Acceleration2022 11th Mediterranean Conference on Embedded Computing (MECO)10.1109/MECO55406.2022.9797220(1-4)Online publication date: 7-Jun-2022
  • (2012)A Parallel Interval Computation Model for Global Optimization with Automatic Load BalancingJournal of Computer Science and Technology10.1007/s11390-012-1260-x27:4(744-753)Online publication date: 12-Jul-2012
  • (2012)Parallel interval newton method on CUDAProceedings of the 11th international conference on Applied Parallel and Scientific Computing10.1007/978-3-642-36803-5_34(454-464)Online publication date: 10-Jun-2012
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing
November 2001
756 pages
ISBN:158113293X
DOI:10.1145/582034
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 November 2001

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. branch-and-bound
  2. branch-and-prune
  3. global optimization
  4. interval analysis
  5. nonlinear equations
  6. parallel computing

Qualifiers

  • Article

Conference

SC '01
Sponsor:

Acceptance Rates

SC '01 Paper Acceptance Rate 60 of 240 submissions, 25%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Interval Constraint Satisfaction: Towards Edge Acceleration2022 11th Mediterranean Conference on Embedded Computing (MECO)10.1109/MECO55406.2022.9797220(1-4)Online publication date: 7-Jun-2022
  • (2012)A Parallel Interval Computation Model for Global Optimization with Automatic Load BalancingJournal of Computer Science and Technology10.1007/s11390-012-1260-x27:4(744-753)Online publication date: 12-Jul-2012
  • (2012)Parallel interval newton method on CUDAProceedings of the 11th international conference on Applied Parallel and Scientific Computing10.1007/978-3-642-36803-5_34(454-464)Online publication date: 10-Jun-2012
  • (2010)A Parallel Interval Computation Model with Alternative Message PassingProceedings of the 2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics - Volume 0210.1109/IHMSC.2010.129(120-123)Online publication date: 26-Aug-2010
  • (2008)Interval Analysis: Parallel Methods for Global OptimizationEncyclopedia of Optimization10.1007/978-0-387-74759-0_299(1709-1717)Online publication date: 2008

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media