Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite 2-Geodesic Transitive Abelian Cayley Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we first give a classification of the family of 2-geodesic transitive abelian Cayley graphs. Let \(\Gamma \) be such a graph which is not 2-arc transitive. It is shown that one of the following holds: (1) \(\Gamma \cong \mathrm{K}_{m[b]}\) for some \(m\ge 3\) and \(b\ge 2\); (2) \(\Gamma \) is a normal Cayley graph of an elementary abelian group; (3) \(\Gamma \) is a cover of Cayley graph \(\Gamma _K\) of an abelian group T / K, where either \(\Gamma _K\) is complete arc transitive or \(\Gamma _K\) is 2-geodesic transitive of girth 3, and A / K acts primitively on \(V(\Gamma _K)\) of type Affine or Product Action. Second, we completely determine the family of 2-geodesic transitive circulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alspach, B., Conder, M., Marušič, D., Xu, M.Y.: A classification of 2-arc transitive circulants. J. Algebraic Comb. 5, 83–86 (1996)

    Article  MATH  Google Scholar 

  2. Devillers, A., Giudici, M., Li, C.H., Praeger, C.E.: Locally \(s\)-distance transitive graphs. J. Graph Theory (2)69, 176–197 (2012)

    Article  MathSciNet  Google Scholar 

  3. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: Line graphs and geodesic transitivity. Ars Math. Contemp. 6, 13–20 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: Local 2-geodesic transitivity and clique graphs. J. Comb. Theory Ser. A 120, 500–508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: On normal 2-geodesic transitive Cayley graphs. J. Algebraic Comb. 39, 903–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, S.F., Wang, R.J., Xu, M.Y.: On the normality of Cayley digraphs of order twice a prime. Australas. J. Comb. 18, 227–234 (1998)

    MathSciNet  Google Scholar 

  7. Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243–256 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ivanov, A.A., Praeger, C.E.: On finite affine 2-arc transitive graphs. Eur. J. Comb. 14, 421–444 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, W., Devillers, A., Li, C.H., Praeger, C.E.: On geodesic transitive graphs. Discret. Math. 338, 168–173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kovács, I.: Classifying arc-transitive circulants. J. Algebraic Comb. 20, 353–358 (2004)

    Article  MATH  Google Scholar 

  11. Kwak, J.H., Oh, J.M.: One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer. Acta Math. Sin. (Engl. Ser.) 22, 1305–1320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C.H.: The finite primitive permutation groups containing an abelian regular subgroup. Proc. Lond. Math. Soc. 87, 725–748 (2003)

    Article  MATH  Google Scholar 

  13. Li, C.H.: Permutation groups with a cyclic regular subgroup and arc transitive circulants. J. Algebraic Comb. 21, 131–136 (2005)

    Article  MATH  Google Scholar 

  14. Li, C.H., Luo, B.G., Pan, J.M.: Finite locally primitive abelian Cayley graphs. Sci. China Math. 54(4), 845–854 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C.H., Pan, J.M.: Finite 2-arc-transitive abelian Cayley graphs. Eur. J. Comb. 29, 148–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liebeck, M.W., Praeger, C.E., Saxl, J.: On the O’Nan–Scott theorem for finite primitive permutation groups. J. Aust. Math. Soc. Ser. A 44, 389–396 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, Z.P., Xu, M.Y.: On the normality of Cayley graphs of order \(pq\). Australas. J. Comb. 27, 81–93 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Praeger, C.E.: An O’Nan Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. (2) 47, 227–239 (1993)

    Article  MathSciNet  Google Scholar 

  19. Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Aust. Math. Soc. 60, 207–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Potočnik, P.: On 2-arc transitive Cayley graphs of abelian groups. Discret. Math. 244(1–3), 417–421 (2002)

    Article  MATH  Google Scholar 

  21. Tutte, W.T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43, 459–474 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tutte, W.T.: On the symmetry of cubic graphs. Can. J. Math. 11, 621–624 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weiss, R.: The non-existence of 8-transitive graphs. Combinatorica 1, 309–311 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, M.Y.: Automorphism groups and isomorphisms of Cayley graphs. Discret. Math. 182, 309–319 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jin.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 11271208, 11301230), NSF of Jiangxi (20142BAB211008, 20151BAB201001) and Jiangxi Education Department Grant (GJJ14351).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Liu, W.J. & Wang, C.Q. Finite 2-Geodesic Transitive Abelian Cayley Graphs. Graphs and Combinatorics 32, 713–720 (2016). https://doi.org/10.1007/s00373-015-1601-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1601-y

Keywords