Abstract
Wireless network on chip (WNoC) is a promising new solution for overcoming the constraints in the traditional electrical interconnections. However, the occurrence of faults has become more prevalent because of the continuous shrinkage of CMOS technology and integration of wireless technology in such complex circuits. This can lead to formation of faulty regions on chip, where the probability of the entire system failure increases in a significant manner. This issue is not addressed in the previous works on WNoC systems. In this article, a fault-tolerant hierarchical hybrid WNoC architecture is proposed. First, an innovative strategy is proposed for solving the problem of fault-tolerant wireless routers placement in standard mesh networks inspired by node-disjoint communication structures. Next, efficient fault-tolerant communication protocols are presented for applying this structure. The experimental results demonstrate the robustness of this proposed architecture in the presence of various fault regions under different traffic patterns.
Similar content being viewed by others
References
Benini L, De Micheli G (2002) Networks on chip: a new paradigm for systems on chip design. Proc 2002 Des Autom Test Eur Conf Exhib IEEE Comput Soc:418–419. doi:10.1109/DATE.2002.998307
Kaplan AB (2008) Architectural integration of RF-interconnect to enhance on-chip communication for Many-Core Chip Multiprocessors. Ph.D. diss., University of California Los Angeles
Shacham A, Bergman K, Carloni LP (2008) Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors. IEEE Trans Comput 57:1246–1260. doi:10.1109/TC.2008.78
Deb S, Ganguly A, Pande PP et al (2012) Wireless NoC as Interconnection Backbone for Multicore Chips: Promises and Challenges. IEEE J Emerg Sel Top Circuits Syst 2:228–239. doi:10.1109/JETCAS.2012.2193835
Ogras UY, Marculescu R (2006) “It’s a small world after all”: NoC performance optimization via long-range link insertion. IEEE Trans Very Large Scale Integr Syst 14:693–706. doi:10.1109/TVLSI.2006.878263
Sabbaghi-Nadooshan R, Modarressi M, Sarbazi-Azad H (2010) The 2D digraph-based NoCs: attractive alternatives to the 2D mesh NoCs. J Supercomput 59:1–21. doi:10.1007/s11227-010-0410-6
ITRS Edition (2011) . http://www.itrs.net/Links/2011ITRS/Home2011.htm. Accessed 10 Oct 2014
Ganguly A, Chang K, Deb S et al (2011) Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore Systems. IEEE Trans Comput 60:1485–1502. doi:10.1109/TC.2010.176
Deb S, Chang K, Yu X et al (2013) Design of an Energy-Efficient CMOS-Compatible NoC Architecture with Millimeter-Wave Wireless Interconnects. IEEE Trans Comput 62:2382–2396. doi:10.1109/TC.2012.224
Chang K, Deb S, Ganguly A et al (2012) Performance evaluation and design trade-offs for wireless network-on-chip architectures. ACM J Emerg Technol Comput Syst 8:1–25. doi:10.1145/2287696.2287706
Hu W-H, Wang C, Bagherzadeh N (2014) Design and analysis of a mesh-based wireless network-on-chip. J Supercomput. doi:10.1007/s11227-014-1341-4
Matolak D, Kodi A, Kaya S et al (2012) Wireless networks-on-chips: architecture, wireless channel, and devices. IEEE Wirel Commun 19:58–65. doi:10.1109/MWC.2012.6339473
More A, Taskin B (2012) A unified design methodology for a hybrid wireless 2-D NoC. 2012 IEEE Int Symp Circuits Syst IEEE: 640–643. doi:10.1109/ISCAS.2012.6272113
Chang K-C (2009) Reliable network-on-chip design for multi-core system-on-chip. J Supercomput 55:86–102. doi:10.1007/s11227-009-0376-4
Radetzki M, Feng C, Zhao X, Jantsch A (2013) Methods for fault tolerance in networks-on-chip. ACM Comput Surv 46:1–38. doi:10.1145/2522968.2522976
Wettin P, Pande PP, Heo D et al (2013) Design space exploration for reliable mm-wave wireless NoC architectures. IEEE 24th Int Conf Appl Syst Archit Process IEEE:79–82. doi:10.1109/ASAP.2013.6567554
Ganguly A, Pande P, Belzer B, Nojeh A (2011) A unified error control coding scheme to enhance the reliability of a hybrid wireless network-on-chip. IEEE Int Symp Defect Fault Toler VLSI Nanotechnol Syst IEEE:277–285. doi:10.1109/DFT.2011.24
Wettin P, Vidapalapati A, Gangul A, Pande PP (2013) Complex network-enabled robust wireless network-on-chip architectures. ACM J Emerg Technol Comput Syst 9:1–19. doi:10.1145/2491676
Nojeh A, Pande P, Ganguly A et al (2008) Reliability of wireless on-chip interconnects based on carbon nanotube antennas. IEEE 14th Int Mix Sensors Syst Test Work IEEE:1–6. doi:10.1109/IMS3TW.2008.4581628
Vijayakumaran V, Yuvaraj MP, Mansoor N et al (2014) CDMA Enabled Wireless Network-on-Chip. ACM J Emerg Technol Comput Syst 10:1–20. doi:10.1145/2536778
Lloyd EL (2010) Fault-Tolerant Relay Node Placement in Heterogeneous Wireless Sensor Networks. IEEE Trans Mob Comput 9:643–656. doi:10.1109/TMC.2009.161
Chen C-W, Chung C-P (2005) Designing a disjoint paths interconnection network with fault tolerance and collision solving. J Supercomput 34:63–80. doi:10.1007/s11227-005-0327-7
Furhad MH, Kim J-M (2014) A shortly connected mesh topology for high performance and energy efficient network-on-chip architectures. J Supercomput 69:766–792. doi:10.1007/s11227-014-1178-x
Zhao D, Wang Y (2008) MTNet: Design of a Wireless Test Framework for Heterogeneous Nanometer Systems-on-Chip. IEEE Trans Very Large Scale Integr Syst 16:1046–1057. doi:10.1109/TVLSI.2008.2000820
Zhao D, Wang Y, Li J, Kikkawa T (2011) Design of multi-channel wireless NoC to improve on-chip communication capacity!. Proc Fifth ACM/IEEE Int Symp Netw Chip ACM:177–184
Zhao D, Wang Y (2008) SD-MAC: Design and Synthesis of a Hardware-Efficient Collision-Free QoS-Aware MAC Protocol for Wireless Network-on-Chip. IEEE Trans Comput 57:1230–1245. doi:10.1109/TC.2008.86
Deb S, Ganguly A, Chang K et al (2010) Enhancing performance of network-on-chip architectures with millimeter-wave wireless interconnects. In: ASAP 2010–21st IEEE Int. Conf. Appl. Syst. Archit. Process. IEEE, pp 73–80. doi:10.1109/ASAP.2010.5540799
Lee S-B, Zhang L, Cong J et al (2009) A scalable micro wireless interconnect structure for CMPs. In: Proc. 15th Annu. Int. Conf. Mob. Comput. Netw.—MobiCom ’09. ACM Press, New York. doi:10.1145/1614320.1614345
Kempa K, Rybczynski J, Huang Z et al (2007) Carbon Nanotubes as Optical Antennae. Adv Mater 19:421–426. doi:10.1002/adma.200601187
West DB (2001) Introduction to graph theory. Prentice hall, Upper Saddle River
Boppana RV, Chalasani S (1995) Fault-tolerant wormhole routing algorithms for mesh networks. IEEE Trans Comput 44:848–864. doi:10.1109/12.392844
Duato J, Yalamanchili S, Ni LM (2003) Interconnection networks: an engineering approach. Morgan Kaufmann Publishers Inc, USA
Zhang Z, Greiner A, Taktak S (2008) A reconfigurable routing algorithm for a fault-tolerant 2D-Mesh Network-on-Chip. Proc Des Autom Conf:441–446. doi:10.1109/DAC.2008.4555858
Manevich R, Polishuk L, Cidon I, Kolodny A (2014) Designing single-cycle long links in hierarchical NoCs. Microprocess Microsyst 38:814–825. doi:10.1016/j.micpro.2014.05.005
Varga A (2001) The OMNeT++ discrete event simulation system. Proc. Eur. Simul. Multiconference. sn. p 185
Ben-Itzhak Y, Zahavi E, Cidon I, Kolodny A (2012) HNOCS: modular open-source simulator for Heterogeneous NoCs. Int Conf Embed Comput Syst IEEE. pp 51–57. doi:10.1109/SAMOS.2012.6404157
Koohi S, Hessabi S (2011) Hierarchical opto-electrical on-chip network for future multiprocessor architectures. J Syst Archit 57:4–23. doi:10.1016/j.sysarc.2010.07.003
Pande PP, Grecu C, Jones M et al (2005) Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Trans Comput 54:1025–1040. doi:10.1109/TC.2005.134
Zhang Y, Hu X, Deutsch A et al (2011) Prediction and comparison of high-performance on-chip global interconnection. IEEE Trans Very Large Scale Integr Syst 19:1154–1166. doi:10.1109/TVLSI.2010.2047415
Kahng a. B, Li BL Bin, Peh L-SPL-S, Samadi K (2009) ORION 2.0: A fast and accurate NoCapower and area model for early-stage design space exploration. 2009 Des Autom Test Eur Conf Exhib .pp 423–428. doi:10.1109/DATE.2009.5090700
Hayenga M, Johnson DR, Lipasti M (2010) Pitfalls of orion-based simulation. ORION 35:0–40
Sun C, Chen C-HO, Kurian G, et al. (2012) DSENT—a Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. 2012 IEEE/ACM Sixth Int. Symp. Networks-on-Chip. IEEE. pp 201–210. doi:10.1109/NOCS.2012.31
PTM—Latest models. http://ptm.asu.edu/latest.html. Accessed 10 Oct 2014
Francis RM (2009) Exploring networks-on-chip for FPGAs. Ph.D. diss., University of Cambridge
Banerjee N, Vellanki P, Chatha KS (2004) A power and performance model for network-on-chip architectures. Proc Des Autom Test Eur Conf Exhib IEEE Comput Soc:1250–1255. doi:10.1109/DATE.2004.1269067
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dehghani, A., Jamshidi, K. A fault-tolerant hierarchical hybrid mesh-based wireless network-on-chip architecture for multicore platforms. J Supercomput 71, 3116–3148 (2015). https://doi.org/10.1007/s11227-015-1430-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-015-1430-z