Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip

Abstract

An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom–photon coupling can be made larger than all decoherence rates of the system. For single atoms, this ‘strong coupling regime’ of cavity quantum electrodynamics1,2 has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping3,4 the atom and cooling5,6 it towards the motional ground state; the latter has been achieved in one dimension so far5. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved7 in atomic Bose–Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently8,9, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity10 with atom-chip technology11. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode12. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms–cavity system, which we map out over a wide range of atom numbers and cavity–atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light–matter quantum interface for quantum information13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Control of the coupling along the resonator axis.
Figure 3: Map of the energies of the dressed states.
Figure 4: Cavity-induced heating of the BEC at different transverse positions for ΔL = ΔC = 0.

Similar content being viewed by others

References

  1. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. T76, 127–137 (1998)

    Article  CAS  ADS  Google Scholar 

  2. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, Oxford, UK, 2006)

    Book  Google Scholar 

  3. Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999)

    Article  CAS  ADS  Google Scholar 

  4. Pinkse, P. W. H., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000)

    Article  CAS  ADS  Google Scholar 

  5. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006)

    Article  CAS  ADS  Google Scholar 

  6. Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Anglin, J. R. & Ketterle, W. Bose–Einstein condensation of atomic gases. Nature 416, 211–218 (2002)

    Article  CAS  ADS  Google Scholar 

  8. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005)

    Article  ADS  Google Scholar 

  9. Slama, S., Bux, S., Krenz, C., Zimmermann, C. & Courteille, P. W. Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007)

    Article  CAS  ADS  Google Scholar 

  10. Steinmetz, T. et al. A stable fiber-based Fabry–Perot cavity. Appl. Phys. Lett. 89, 111110 (2006)

    Article  ADS  Google Scholar 

  11. Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007)

    Article  ADS  Google Scholar 

  12. Brennecke, F. et al. Cavity QED with a Bose–Einstein condensate. Nature doi: 10.1038/nature06120 (this issue).

  13. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  CAS  ADS  Google Scholar 

  14. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  CAS  ADS  Google Scholar 

  15. Sherson, J., Julsgaard, B. & Polzik, E. S. Deterministic atom–light quantum interface. Adv. At. Mol. Opt. Phys. 54, 81–130 (2006)

    Article  ADS  Google Scholar 

  16. Simon, J., Tanji, H., Thompson, J. K. & Vuletic, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007)

    Article  ADS  Google Scholar 

  17. Tavis, M. & Cummings, F. W. Approximate solutions for an N-molecule–radiation-field Hamiltonian. Phys. Rev. 188, 692–695 (1969)

    Article  ADS  Google Scholar 

  18. Ketterle, W. & Inouye, S. Does matter wave amplification work for fermions? Phys. Rev. Lett. 86, 4203–4206 (2001)

    Article  CAS  ADS  Google Scholar 

  19. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–574 (1999)

    Article  CAS  Google Scholar 

  20. Morice, O., Castin, Y. & Dalibard, J. Refractive index of a dilute Bose gas. Phys. Rev. A 51, 3896–3901 (1995)

    Article  CAS  ADS  Google Scholar 

  21. Mekhov, I. B., Maschler, C. & Ritsch, H. Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics. Nature Phys. 3, 319–323 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Treutlein, P. et al. Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54, 702–718 (2006)

    Article  CAS  Google Scholar 

  23. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006)

    Article  CAS  ADS  Google Scholar 

  24. Gerbier, F. Quasi-1D Bose–Einstein condensates in the dimensional crossover regime. Europhys. Lett. 66, 771–777 (2004)

    Article  CAS  ADS  Google Scholar 

  25. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992)

    Article  CAS  Google Scholar 

  26. Fischer, T., Maunz, P., Puppe, T., Pinkse, P. W. H. & Rempe, G. Collective light forces on atoms in a high-finesse cavity. N. J. Phys. 3, 11 (2001)

    Google Scholar 

  27. Murch, K. W., Moore, K. L., Gupta, S. & Stamper-Kurn, D. M. Measurement of intracavity quantum fluctuations of light using an atomic fluctuation bolometer. Preprint at 〈http://arxiv.org/abs/0706.1005〉 (2007)

  28. Lye, J. E., Hope, J. J. & Close, J. D. Nondestructive dynamic detectors for Bose–Einstein condensates. Phys. Rev. A 67, 043609 (2003)

    Article  ADS  Google Scholar 

  29. Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419, 51–54 (2002)

    Article  CAS  ADS  Google Scholar 

  30. Mohring, B. et al. Extracting atoms on demand with lasers. Phys. Rev. A 71, 053601 (2005)

    Article  ADS  Google Scholar 

  31. Du, S. W. et al. Atom-chip Bose–Einstein condensation in a portable vacuum cell. Phys. Rev. A 70, 053606 (2004)

    Article  ADS  Google Scholar 

  32. Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)

    Article  ADS  Google Scholar 

  33. Reichel, J., Hänsel, W. & Hänsch, T. W. Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83, 3398–3401 (1999)

    Article  CAS  ADS  Google Scholar 

  34. Harber, D. M., McGuirk, J. M., Obrecht, J. M. & Cornell, E. A. Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low Temp. Phys. 133, 229–238 (2003)

    Article  CAS  ADS  Google Scholar 

  35. Reichel, J. Microchip traps and Bose–Einstein condensation. Appl. Phys. B 74, 469–487 (2002)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Hare and F. Orucevic for support in producing the fibre mirror surfaces, and F. Gerbier for the calculation of condensate size in the crossover regime. We acknowledge discussions with Y. Castin and J. Dalibard about atom–light interaction in BECs, as well as with T. W. Hänsch, I. Cirac, P. Treutlein and R. Long. This work was supported by a European Young Investigator Award (EURYI), a Chaire d’Excellence of the French Ministry for Research, and by the EU (‘Atom Chips’ Research Training Network and ‘SCALA’ Integrated Programme). The Atom Chip team at Laboratoire Kastler Brossel is part of the Institut Francilien de Recherche sur les Atomes Froids (IFRAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Reichel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Notes with additional information on collective atom-field interaction and describes two models that we refer to in the letter: the multilevel coupling model that predicts an anticrossing in the vacuum-Rabi spectrum, and the momentum-diffusion model for cavity field-induced heating of the atom cloud. (PDF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombe, Y., Steinmetz, T., Dubois, G. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007). https://doi.org/10.1038/nature06331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing