Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor

Abstract

To understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing1,2,3,4,5,6. Recent quantum oscillation experiments on high-transition-temperature (high-Tc) copper oxide superconductors7,8,9,10 have revealed the existence of a Fermi surface akin to that in normal metals, comprising fermionic carriers that undergo orbital quantization11. The unexpectedly small size of the observed carrier pocket, however, leaves open a variety of possibilities for the existence or form of any underlying magnetic order, and its relation to d-wave superconductivity12,13,14,15. Here we report experiments on quantum oscillations in the magnetization (the de Haas-van Alphen effect) in superconducting YBa2Cu3O6.51 that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole-doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density-wave model with spiral or related modulated magnetic order, consistent with experimental observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental data.
Figure 2: de Haas-van Alphen oscillations in YBa2Cu3O6.51.
Figure 3: Fits to the de Haas-van Alphen oscillations.
Figure 4: Fermi surface reconstruction in YBa2Cu3O6.51.

Similar content being viewed by others

References

  1. Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    Article  CAS  ADS  Google Scholar 

  2. Lee, P. A. From high temperature superconductivity to quantum spin liquid: Progress in strong correlation physics. Preprint at 〈http://arXiv.org/abs/0708.2115v2〉 (2007)

  3. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  5. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004)

    Article  CAS  Google Scholar 

  6. Kaul, R., Kim, Y. B., Sachdev, S. & Senthil, T. Algebraic charge liquids. Nature Phys. 4, 28–31 (2008)

    Article  CAS  ADS  Google Scholar 

  7. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007)

    Article  CAS  ADS  Google Scholar 

  8. Yelland, E. A. et al. Quantum oscillations in the underdoped cuprate YBa2Cu4O8 . Phys. Rev. Lett. 100, 047003 (2007)

    Article  ADS  Google Scholar 

  9. Bangura, A. F. et al. Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov–de Haas oscillations in YBa2Cu4O8 . Phys. Rev. Lett. 100, 047004 (2007)

    Article  ADS  Google Scholar 

  10. Jaudet, C. et al. de Haas-van Alphen oscillations in the underdoped cuprate YBa2Cu3O6. 5 . Preprint at 〈http://arXiv.org/abs/0711.3559〉 (2007)

  11. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, UK, 1984)

    Book  Google Scholar 

  12. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Millis, A. J. & Norman, M. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007)

    Article  ADS  Google Scholar 

  14. Chen, W.-O., Yang, K.-Y., Rice, T. M. & Zhang, F. C. Quantum oscillations in magnetic field induced antiferromagnetic phase of underdoped cuprates: Application to ortho-II YBa2Cu3O6. 5 . Europhys. Lett. 82, 17004–17008 (2008)

    Article  Google Scholar 

  15. Chakravarty, S. & Kee, H.-Y. Fermi pockets and quantum oscillations of the Hall coefficient in high temperature superconductors. Preprint at 〈http://arXiv.org/abs/0710.0608〉 (2007)

  16. Schrieffer, J. R. & Brooks, J. S. (eds) High-Temperature Superconductivity Theory and Experiment (Springer Science, New York, 2007)

    MATH  Google Scholar 

  17. Naughton, M. J. et al. Magnetization study of the field-induced transitions in tetramethyltetraselenafulvalenium perchlorate, (TMTSF)2ClO4 . Phys. Rev. Lett. 26, 969–972 (1985)

    Article  ADS  Google Scholar 

  18. Wosnitza, J. et al. Two-dimensional Fermi liquid with a fixed chemical potential. Phys. Rev. B 61, 7383–7387 (2000)

    Article  CAS  ADS  Google Scholar 

  19. Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505(R) (2006)

    Article  ADS  Google Scholar 

  20. Loram, J. W., Luo, J., Cooper, J. R., Liang, W. Y. & Tallon, J. L. Evidence on the pseudogap and condensate from the electronic specific heat. J. Phys. Chem. Solids 62, 59–64 (2001)

    Article  CAS  ADS  Google Scholar 

  21. Kampf, A. Magnetic correlations in high temperature superconductivity. Phys. Rep. 249, 219–351 (1994)

    Article  CAS  ADS  Google Scholar 

  22. Stock, C. et al. Dynamic stripes and resonance in the superconducting and normal phases of YBa2Cu3O6. 5 . Phys. Rev. B 69, 014502 (2004)

    Article  ADS  Google Scholar 

  23. Stock, C. et al. From incommensurate to dispersive spin-fluctuations: The high-energy inelastic spectrum in superconducting YBa2Cu3O6. 5 . Phys. Rev. B 71, 024522 (2001)

    Article  ADS  Google Scholar 

  24. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988)

    Article  CAS  ADS  Google Scholar 

  25. Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006)

    Article  CAS  ADS  Google Scholar 

  26. Lake, B. et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759–1762 (2001)

    Article  CAS  ADS  Google Scholar 

  27. Miller, R. I. et al. Evidence for static magnetism in the vortex cores of ortho-II YBa2Cu3O6. 50 . Phys. Rev. Lett. 88, 137002 (2002)

    Article  CAS  ADS  Google Scholar 

  28. Shraiman, B. I. & Siggia, E. D. Spiral phase of a doped quantum antiferromagnet. Phys. Rev. Lett. 62, 1564–1567 (1989)

    Article  CAS  ADS  Google Scholar 

  29. Chaikin, P. M. Field induced spin density waves. J. Phys. I (France) 6, 1875–1898 (1996)

    Article  CAS  Google Scholar 

  30. Corcoran, R. et al. de Haas-van Alphen effect in the superconducting state. Physica B 206 & 207, 534–541 (1995)

    Article  CAS  Google Scholar 

  31. Podolsky, D. & Kee, H.-Y. Quantum oscillations of ortho-II YBa2Cu3O6.5 . Preprint at 〈http://arXiv.org/abs/0806.0005〉 (2008)

Download references

Acknowledgements

This work was supported by the National Science Foundation, the Department of Energy (US), Florida State, the UK EPSRC, the Canadian Institute for Advanced Research, and NSERC. S.E.S. acknowledges support from the Institute for Complex Adaptive Matter, COST, and Trinity College (Cambridge University). We acknowledge discussions with E. Abrahams, P. W. Anderson, E. Berg, A. Carrington, S. Chakravarty, J. Fletcher, L. P. Gor’kov, S. R. Julian, H.-Y. Kee, S. A. Kivelson, D. LeBoeuf, P. A. Lee, P. B. Littlewood, A. P. Mackenzie, A. Millis, M. R. Norman, D. Pines, C. Proust, T. M. Rice, S. Sachdev and L. Taillefer, and experimental assistance from G. Jones, J. H. Park and S. Tozer.

Author Contributions Torque experiments were performed by S.E.S., N.H. and G.G.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchitra E. Sebastian.

Supplementary information

Supplementary information

The file contains Supplementary Discussion, Supplementary Figures S1-S6 with Legends and additional references. (PDF 4527 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastian, S., Harrison, N., Palm, E. et al. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature 454, 200–203 (2008). https://doi.org/10.1038/nature07095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing