Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A model for computing and energy dissipation of molecular QCA devices and circuits

Published: 28 January 2008 Publication History

Abstract

Quantum-dot Cellular Automata is an emerging technology that offers significant improvements over CMOS. Recently QCA has been advocated as a technology for implementing reversible computing. However, existing tools for QCA design and evaluation have limited capabilities. This paper presents a new mechanical-based model for computing in QCA. By avoiding a full quantum-thermodynamical calculation, it offers a classical view of the principles of QCA operation and can be used in evaluating energy dissipation for reversible computing. The proposed model is mechanically based and is applicable to six-dot (neutrally charged) QCA cells for molecular implementation. The mechanical model consists of a sleeve of changing shape; four electrically charged balls are connected by a stick that rotates around an axle in the sleeve. The sleeve acts as a clocking unit, while the angular position of the stick within the changing shape of the sleeve, identifies the phase for quasi-adiabatic switching. A thermodynamic analysis of the proposed model is presented. The behaviors of various QCA basic devices and circuits are analyzed using the proposed model. It is shown that the proposed model is capable of evaluating the energy consumption for reversible computing at device and circuit levels for molecular QCA implementation. As applicable to QCA, two clocking schemes are also analyzed for energy dissipation and performance (in terms of number of clocking zones).

References

[1]
Amlani, I., Orlov, A. O., Toth, G., Lent, C. S., Bernstein, G. H., and Snider, G. L. 1999. Digital logic gate using quantum-dot cellular automat. Science 284 (5412), 289--291.
[2]
Antonelli, D. A., Chen, D. Z., Dysart, T. J., Hu, X. S., Kahng, A. B., Kogge, P. M., Murphy, R. C., and Niemier, M. T. 2004. Quantum-dot cellular automata (qca) circuit partitioning: problem modeling and solutions. In Proceedings of the Design Automation Conference (DAC). 363--368.
[3]
Bennett, C. H. 1973. Logic reversibility of computation. IBM J. Res. Dev. 17, 525--532.
[4]
Bennett, C. H. 2000. Notes on the history of reversible computation. IBM J. Res. Dev. 44, 44, 525--532.
[5]
Compano, R., Molenkamp, L., and Paul, D. J. 2003. Technology roadmap for nanoelectronics. European Commission IST Programme, Future and Emerging Technologies. www.itrs.net/Links/2003ITRS/LinkedFiles/ERD/NanoeletronicsRdmp.pdf
[6]
Dimitrov, V. S., Jullien, G. A., and Walus, K. 2002. Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In Proceedings of the IEEE Emerging Telecommunications Technologies Conference. 2/1--2/4.
[7]
Fermi, E. 1956. Thermodynamics. Dover Publications Inc., New York, NY.
[8]
Fredkin, E. and Toffoli, T. 1982. Conservative logic. Int. J.Theor. Phys. 21, 219--253.
[9]
Frost, S. E., Rodrigues, A. F., Janiszewski, A. W., Rausch, R. T. and Kogge, P. M. 2002. Memory in motion: A study of storage structures in QCA. In Proceedings of the Workshop on Non-Silicon Computation.
[10]
Hu, W., Sarveswaran, K., Lieberman, M., and Bernstein, G. H. 2005. High-resolution electron beam lithography and DNA nano-patterning for molecular QCA. IEEE Trans. Nanotech. 4, 3, 312--316.
[11]
Huang, J., Ma, X., and Lombardi, F. 2006. Energy analysis of QCA circuits for reversible computing. In Proceedings of the 6th IEEE Conference on Nanotechnology (NANO) 1, 39--42.
[12]
Huang, J., Momenzadeh, M. Schiano, L., and Lombardi, F. 2005. Simulation-based design of modular QCA circuits. In Proceedings of the 5th IEEE Conference on Nanotechnology 2, 533--536.
[13]
Huang, J., Momenzadeh, M., Schiano, L., Ottavi, M., and Lombardi, F. 2005. Tile-based QCA design using majority-like logic primitives. ACM J. Emerg. Technol Comput. Syst. 1, 3, 163--185.
[14]
Huang, J., Momenzadeh, M., Tahoori, M., and Lombardi. F. 2005. On the evaluation of scaling of QCA devices in the presence of defects. IEEE Trans. Nanotech 4, 6, 740--743.
[15]
Landauer, R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183--191.
[16]
Lent, C. S., Liu, M., and Lu, Y. 2006. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotech. 17, 16, 4240--4251.
[17]
Lent, C. S. and Tougaw, P. D. 1997. A device architecture for computing with quantum dots. In Proceedings of the IEEE 85, 4, 541--557.
[18]
Lent, C. S., Tougaw, P. D., and Porod, W. 1994. Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In Proceedings of the Workshop on Physics and Computing, 5--13.
[19]
Ma, X., Huang, J., Metra, C., and Lombardi, F. 2005. Testing reversible 1D arrays of molecular QCA. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT). 71--79.
[20]
Niemier, M. T. and Kogge, P. M. 1999. Logic-in-wire: using quantum dots to implement a microprocessor. In Proceedings of the International Conference on Electronics, Circuits, and Systems (ICECS) 3, 1211--1215.
[21]
Niemier, M. T. and Kogge, P. M. 2001. Problems in designing with QCAs: layout=timing. Int. J. Circ. Theory Appl. 29, 1, 49--62.
[22]
Niemier, M. T., Kontz, M. J., and Kogge, P. M. 2000. A design of and design tools for a novel quantum-dot based microprocessor. In Proceedings of the ACM Design Automation Conference (DAC). 227--232.
[23]
Niemier, M. T., Rodrigues, A. F., and Kogge, P. M. 2002. A potentially implementable FPGA for quantum dot cellular automata. In Proceedings of the 1st Workshop on Non-Silicon Computation (NSC-1). Held in Conjunction with the 8th International Symposium on High Performance Computer Architecture (HPCA).
[24]
Ottavi, M., Momenzadeh, M., and Lombardi, F. 2005. Modeling QCA defects at molecular level in combinational circuits. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT). 208--216.
[25]
Smith, C. G. 1999. Computation without current. Science 284, 2, 274.
[26]
Tahoori, M., Momenzadeh, M., Huang, J., and Lombardi, F. 2004. Testing of quantum cellular automata. IEEE Trans. Nanotechn. 3, 4, 432--442.
[27]
Tang, R., Zhang, F., and Kim, Y. B. 2005. QCA-based nano circuits design. In Proceedings of the IEEE International Symposium on Circuits and Systems. Kobe, Japan, 2527--2530.
[28]
Tang, R., Zhang, F., and Kim, Y. B. 2005. Quantum-dot automata SPICE macro model. In Proceedings of the ACM Great Lakes Symposium on VLSI. Chicago, IL, 108--11.
[29]
Timler, J. and Lent, C. S. 2003. Maxwell's demon and quantum-dot cellular automata. J. Appl. Phys. 94, 2 1050--1060.
[30]
Toffoli, T. 1980. Reversible computing. Tech. Rep. MITLCSTM151, MIT Laboratory for Computer Science.
[31]
Toth, G. 2000. Correlation and coherence in quantum-dot cellular automata. Ph.D. Thesis, University of Notre Dame.
[32]
Tougaw, P. D. and Lent, C. S. 1994. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 3, 1818--1825.
[33]
Tougaw, P. D. and Lent, C. S. 1996. Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 15, 4722--4736.
[34]
Walus, K., Budiman, R. A., and Jullien, G. A. 2002. Effects of morphological variations of self-assembled nanostructures on quantum-dot cellular automata (QCA) circuits. Frontiers of Integration, An International Workshop on Integrating Nanotechnologies.
[35]
Walus, K., Dysart, T., Jullien, G. A., and Budiman, R. A. 2003. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. In Proceedings of the 2nd International Workshop on Quantum Dots for Quantum Computing and Classical Size Effect Circuits. Notre Dame, IN.
[36]
Walus, K., Dysart, T., Jullien, G. A., and Budiman, R. A. 2004. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotech. 3, 26--29.
[37]
Walus, K., Vetteth, A., Jullien, G. A. and Dimitrov, V. S. 2003. RAM design using quantum-dot cellular automata. In Proceedings of the Nanotechnology Conference. 2, 160--163.

Cited By

View all
  • (2024)Compositional Reversible ComputationReversible Computation10.1007/978-3-031-62076-8_2(10-27)Online publication date: 4-Jul-2024
  • (2023)Robustness of the In-Plane Data Crossing for Molecular Field-Coupled Nanocomputing2023 IEEE 23rd International Conference on Nanotechnology (NANO)10.1109/NANO58406.2023.10231304(732-736)Online publication date: 2-Jul-2023
  • (2022)Design and Analysis of Novel Non-Reversible & Reversible Parity Generator and Detector in Quantum Cellular Automata using Feynman GateMicro and Nanosystems10.2174/187640291366621072617020714:3(256-262)Online publication date: Sep-2022
  • Show More Cited By

Index Terms

  1. A model for computing and energy dissipation of molecular QCA devices and circuits

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 3, Issue 4
      January 2008
      104 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/1324177
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Published: 28 January 2008
      Accepted: 01 May 2007
      Revised: 01 February 2007
      Received: 01 August 2006
      Published in JETC Volume 3, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. QCA
      2. emerging technology
      3. reversible computing
      4. thermodynamic analysis

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)11
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 13 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Compositional Reversible ComputationReversible Computation10.1007/978-3-031-62076-8_2(10-27)Online publication date: 4-Jul-2024
      • (2023)Robustness of the In-Plane Data Crossing for Molecular Field-Coupled Nanocomputing2023 IEEE 23rd International Conference on Nanotechnology (NANO)10.1109/NANO58406.2023.10231304(732-736)Online publication date: 2-Jul-2023
      • (2022)Design and Analysis of Novel Non-Reversible & Reversible Parity Generator and Detector in Quantum Cellular Automata using Feynman GateMicro and Nanosystems10.2174/187640291366621072617020714:3(256-262)Online publication date: Sep-2022
      • (2021)Novel Circuits Design for SISO Shift Register in QCA TechnologyJournal of Circuits, Systems and Computers10.1142/S021812662150203030:11(2150203)Online publication date: 31-Mar-2021
      • (2020)Design of QCA-Serial Parallel Multiplier (QSPM) With Energy Dissipation AnalysisIEEE Transactions on Circuits and Systems II: Express Briefs10.1109/TCSII.2019.295386667:10(1939-1943)Online publication date: Oct-2020
      • (2017)Novel 8-bit reversible full adder/subtractor using a QCA reversible gateJournal of Computational Electronics10.1007/s10825-017-0963-116:2(459-472)Online publication date: 1-Jun-2017
      • (2015)Die-stacking ArchitectureSynthesis Lectures on Computer Architecture10.2200/S00644ED1V01Y201505CAC03110:2(1-127)Online publication date: 10-Jun-2015
      • (2015)Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexersComputers and Electrical Engineering10.1016/j.compeleceng.2015.05.00145:C(42-54)Online publication date: 1-Jul-2015
      • (2014)Realizing Reversible Computing in QCA Framework Resulting in Efficient Design of Testable ALUACM Journal on Emerging Technologies in Computing Systems10.1145/262953811:3(1-22)Online publication date: 30-Dec-2014
      • (2013)Hybrid Redundancy for Defect Tolerance in Molecular Crossbar MemoryACM Journal on Emerging Technologies in Computing Systems10.1145/2422094.24221019:1(1-18)Online publication date: 1-Feb-2013
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media