Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A radiative transfer framework for rendering materials with anisotropic structure

Published: 26 July 2010 Publication History

Abstract

The radiative transfer framework that underlies all current rendering of volumes is limited to scattering media whose properties are invariant to rotation. Many systems allow for "anisotropic scattering," in the sense that scattered intensity depends on the scattering angle, but the standard equation assumes that the structure of the medium is isotropic. This limitation impedes physics-based rendering of volume models of cloth, hair, skin, and other important volumetric or translucent materials that do have anisotropic structure. This paper presents an end-to-end formulation of physics-based volume rendering of anisotropic scattering structures, allowing these materials to become full participants in global illumination simulations.
We begin with a generalized radiative transfer equation, derived from scattering by oriented non-spherical particles. Within this framework, we propose a new volume scattering model analogous to the well-known family of microfacet surface reflection models; we derive an anisotropic diffusion approximation, including the weak form required for finite element solution and a way to compute the diffusion matrix from the parameters of the scattering model; and we also derive a new anisotropic dipole BSSRDF for anisotropic translucent materials. We demonstrate results from Monte Carlo, finite element, and dipole simulations. All these contributions are readily implemented in existing rendering systems for volumes and translucent materials, and they all reduce to the standard practice in the isotropic case.

Supplementary Material

JPG File (tp100-10.jpg)
Supplemental material. (053.zip)
MP4 File (tp100-10.mp4)

References

[1]
Arbree, A., Walter, B., and Bala, K. 2009. Heterogeneous subsurface scattering using the finite element method. To appear in IEEE Transactions on Visualization and Computer Graphics.
[2]
Arridge, S. R. 1999. Optical tomography in medical imaging. Inverse Problems 15, 2, R41--R93.
[3]
Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proceedings of ACM SIGGRAPH 2000, 65--74.
[4]
Blinn, J. F. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In Computer Graphics (Proceedings of SIGGRAPH 82), 21--29.
[5]
Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J., and Sillion, F. X. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303--328.
[6]
Chandrasekhar, S. 1959. Radiative Transfer. Oxford University Press.
[7]
Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1 (Jan.), 7--24.
[8]
Crassin, C., Neyret, F., Lefebvre, S., and Eisemann, E. 2009. Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D).
[9]
Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 1032--1039.
[10]
Drebin, R. A., Carpenter, L., and Hanrahan, P. 1988. Volume rendering. In Computer Graphics (Proceedings of SIGGRAPH 88), 65--74.
[11]
Dudko, O. K., and Weiss, G. H. 2005. Estimation of anisotropic optical parameters of tissue in a slab geometry. Biophysical Journal 88, 5, 3205--3211.
[12]
Egan, W., and Hilgeman, T. 1979. Optical Properties of Inhomogeneous Materials. Academic Press New York.
[13]
Farrell, T. J., and Patterson, M. S. 1992. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. In Medical Physics, Volume 19, Issue 4, 879--888.
[14]
Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH 2001, 15--22.
[15]
Gibson, A. P., Hebden, J. C., and Arridge, S. R. 2005. Recent advances in diffuse optical imaging. Physics in Medicine and Biology 50, R1--R43.
[16]
Groemer, H. 1996. Geometric applications of Fourier series and spherical harmonics. Cambridge Univ Press.
[17]
Heino, J., Arridge, S., Sikora, J., and Somersalo, E. 2003. Anisotropic effects in highly scattering media. Phys. Rev. E 68, 3.
[18]
Heiskala, J., Nissila, I., Neuvonen, T., Jarvenpaa, S., and Somersalo, E. 2005. Modeling anisotropic light propagation in a realistic model of the human head. Applied Optics 44, 11, 2049--2057.
[19]
Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Academic Press, New York, USA.
[20]
Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. Tech. rep., Cornell University. (Expanded version), http://hdl.handle.net/1813/14982.
[21]
Jarosz, W., Carr, N. A., and Jensen, H. W. 2009. Importance Sampling Spherical Harmonics. Computer Graphics Forum (Proc. Eurographics EG'09) 28, 2 (4), 577--586.
[22]
Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proceedings of SIGGRAPH 98, 311--320.
[23]
Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 01, 511--518.
[24]
Johnson, P. M., and Lagendijk, A. 2009. Optical anisotropic diffusion: new model systems and theoretical modeling. Journal of Biomedical Optics 14, 5.
[25]
Kajiya, J. T., and Herzen, B. P. V. 1984. Ray tracing volume densities. In Computer Graphics (Proceedings of SIGGRAPH 84), 165--174.
[26]
Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Computer Graphics (Proceedings of SIGGRAPH 89), 271--280.
[27]
Kaldor, J. M., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, 1--9.
[28]
Kienle, A., Forster, F., and Hibst, R. 2004. Anisotropy of light propagation in biological tissue. Optics letters 29, 22, 2617--2619.
[29]
Lacroute, P., and Levoy, M. 1994. Fast volume rendering using a shear-warp factorization of the viewing transformation. In Proceedings of SIGGRAPH 94, 451--458.
[30]
Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Eurographics Rendering Workshop 1996, 91--100.
[31]
Levoy, M. 1988. Display of surfaces from volume data. IEEE Computer Graphics & Applications 8, 3 (May), 29--37.
[32]
Li, P., and Uren, N. F. 1998. Analytical solution for the electric potential due to a point source in an arbitrarily anisotropic halfspace. Journal of Engineering Mathematics 33, 129--140.
[33]
Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24 (July), 727--734.
[34]
Max, N. L. 1994. Efficient light propagation for multiple anisotropic volume scattering. In Fifth Eurographics Workshop on Rendering, 87--104.
[35]
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. 2006. Multiple Scattering of Light by Particles. Cambridge U. Press.
[36]
Moulton, J. 1990. Diffusion modeling of picosecond laser pulse propagation in turbid media. Master's thesis, McMaster University.
[37]
Neyret, F. 1998. Modeling, animating, and rendering complex scenes using volumetric textures. IEEE Transactions on Visualization and Computer Graphics 4, 1 (Jan./Mar.), 55--70.
[38]
Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering, 11--22.
[39]
Perlin, K., and Hoffert, E. M. 1989. Hypertexture. In Computer Graphics (Proceedings of SIGGRAPH 89), 253--262.
[40]
Preisendorfer, R. 1976. Hydrologic Optics. US Dept Commerce.
[41]
Premoze, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Rendering Techniques 2004: 15th Eurographics Workshop on Rendering, 363--374.
[42]
Rushmeier, H. E., and Torrance, K. E. 1987. The zonal method for calculating light intensities in the presence of a participating medium. In Computer Graphics (Proceedings of SIGGRAPH 87), 293--302.
[43]
Ryzhik, L., Papanicolaou, G., and Keller, J. B. 1996. Transport equations for elastic and other waves in random media. Wave Motion 24, 1--44.
[44]
Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K. 2005. A practical analytic single scattering model for real time rendering. ACM Trans. Graph. 24, 3 (Aug.), 1040--1049.
[45]
van de Hulst, H. C. 1957. Light Scattering by Small Particles. John Wiley & Sons.
[46]
Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. In Eurographics Workshop on Rendering 2007, 195--206.
[47]
Westover, L. 1990. Footprint evaluation for volume rendering. In Computer Graphics (Proceedings of SIGGRAPH 90), 367--376.
[48]
Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photo-realistic rendering of knitwear using the lumislice. In Proc. ACM SIGGRAPH 2001, 391--398.

Cited By

View all

Index Terms

  1. A radiative transfer framework for rendering materials with anisotropic structure

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 29, Issue 4
      July 2010
      942 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1778765
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 26 July 2010
      Published in TOG Volume 29, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. BSSRDF
      2. anisotropy
      3. diffusion theory
      4. dipole model
      5. finite element method
      6. light transport
      7. subsurface scattering

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)34
      • Downloads (Last 6 weeks)7
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)From microfacets to participating media: A unified theory of light transport with stochastic geometryACM Transactions on Graphics10.1145/365812143:4(1-17)Online publication date: 19-Jul-2024
      • (2024)Real-time Neural Woven Fabric RenderingACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657496(1-10)Online publication date: 13-Jul-2024
      • (2024)Woven Fabric Capture with a Reflection-Transmission Photo PairACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657410(1-10)Online publication date: 13-Jul-2024
      • (2024)VMF Diffuse: A unified rough diffuse BRDFComputer Graphics Forum10.1111/cgf.1514943:4Online publication date: 24-Jul-2024
      • (2024)Practical Appearance Model for Foundation CosmeticsComputer Graphics Forum10.1111/cgf.1514843:4Online publication date: 24-Jul-2024
      • (2024)IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from Monocular Videos via Explicit Ray Tracing2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00184(1877-1888)Online publication date: 16-Jun-2024
      • (2023)Deep Appearance PrefilteringACM Transactions on Graphics10.1145/357032742:2(1-23)Online publication date: 16-Jan-2023
      • (2023)AnisoTag: 3D Printed Tag on 2D Surface via Reflection AnisotropyProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581024(1-15)Online publication date: 19-Apr-2023
      • (2023)State of the Art in Efficient Translucent Material Rendering with BSSRDFComputer Graphics Forum10.1111/cgf.1499843:1Online publication date: 22-Dec-2023
      • (2023)A Hyperspectral Space of Skin Tones for Inverse Rendering of Biophysical Skin PropertiesComputer Graphics Forum10.1111/cgf.1488742:4Online publication date: 26-Jul-2023
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media