Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Acquiring 3D indoor environments with variability and repetition

Published: 01 November 2012 Publication History

Abstract

Large-scale acquisition of exterior urban environments is by now a well-established technology, supporting many applications in search, navigation, and commerce. The same is, however, not the case for indoor environments, where access is often restricted and the spaces are cluttered. Further, such environments typically contain a high density of repeated objects (e.g., tables, chairs, monitors, etc.) in regular or non-regular arrangements with significant pose variations and articulations. In this paper, we exploit the special structure of indoor environments to accelerate their 3D acquisition and recognition with a low-end handheld scanner. Our approach runs in two phases: (i) a learning phase wherein we acquire 3D models of frequently occurring objects and capture their variability modes from only a few scans, and (ii) a recognition phase wherein from a single scan of a new area, we identify previously seen objects but in different poses and locations at an average recognition time of 200ms/model. We evaluate the robustness and limits of the proposed recognition system using a range of synthetic and real world scans under challenging settings.

References

[1]
Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-D shapes. IEEE PAMI 14, 2, 239--256.
[2]
Chang, W., and Zwicker, M. 2011. Global registration of dynamic range scans for articulated model reconstruction. ACM TOG 30, 3, 26:1--26:15.
[3]
Dey, T. K. 2007. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press.
[4]
Engelhard, N., Endres, F., Hess, J., Sturm, J., and Burgard, W. 2011. Real-time 3D visual SLAM with a hand-held RGB-D camera. In Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum.
[5]
Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM TOG 30, 4, 34:1--34:11.
[6]
Gupta, A., Efros, A. A., and Hebert, M. 2010. Blocks world revisited: Image understanding using qualitative geometry and mechanics. In ECCV, 482--496.
[7]
Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. 2010. RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In International Symposium on Experimental Robotics.
[8]
Huang, Q., Koltun, V., and Guibas, L. 2011. Joint-shape segmentation with linear programming. ACM TOG (SIGGRAPH Asia) 30, 6, 125:1--125:11.
[9]
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. 2011. Kinect-fusion: real-time 3D reconstruction and interaction using a moving depth camera. In Proc. UIST, 559--568.
[10]
Koppula, H., Anand, A., Joachims, T., and Saxena, A. 2011. Semantic labeling of 3D point clouds for indoor scenes. In NIPS, 244--252.
[11]
Lee, D. C., Gupta, A., Hebert, M., and Kanade, T. 2010. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In NIPS, 1288--1296.
[12]
Leordeanu, M., and Hebert, M. 2005. A spectral technique for correspondence problems using pairwise constraints. In ICCV, vol. 2, 1482--1489.
[13]
Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM TOG (SIGGRAPH) 28, 5, 175:1--175:10.
[14]
Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., and Mitra, N. J. 2009. Abstraction of man-made shapes. ACM TOG (SIGGRAPH Asia) 28, 5, #137, 1--10.
[15]
Mitra, N. J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Symp. on Geometry Proc., 173--182.
[16]
Mitra, N., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM TOG (SIGGRAPH) 29, 4, 58:1--58:12.
[17]
Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D. 2012. Symmetry in 3d geometry: Extraction and applications. In EUROGRAPHICS State-of-the-art Report.
[18]
Nan, L., Xie, K., and Sharf, A. 2012. A search-classify approach for cluttered indoor scene understanding. ACM TOG (SIGGRAPH Asia) 31, 6.
[19]
Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM TOG (SIGGRAPH) 30, 4, 33:1--33:10.
[20]
Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3D scan completion. In Symp. on Geometry Proc., 23--32.
[21]
Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM TOG (SIGGRAPH) 21, 3, 438--446.
[22]
Schnabel, R., Wessel, R., Wahl, R., and Klein, R. 2008. Shape recognition in 3D point-clouds. In Proc. WSCG, 65--72.
[23]
Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., and Guo, B. 2012. An interactive approach to semantic modeling of indoor scenes with an RGBD camera. ACM TOG (SIGGRAPH Asia) 31, 6.
[24]
Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM TOG (SIGGRAPH Asia) 30, 6, 126:1--126:10.
[25]
Triebel, R., Shin, J., and Siegwart, R. 2010. Segmentation and unsupervised part-based discovery of repetitive objects. In Proceedings of Robotics: Science and Systems.
[26]
Xiang, Y., and Savarese, S. 2012. Estimating the aspect layout of object categories. In CVPR, 3410--3417.
[27]
Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. ACM TOG (SIGGRAPH Asia) 29, 5, 184:1--184:10.
[28]
Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3D object modeling. ACM TOG (SIGGRAPH) 30, 4, 80:1--80:10.
[29]
Zheng, Y., Chen, X., Cheng, M.-M., Zhou, K., Hu, S.-M., and Mitra, N. J. 2012. Interactive images: Cuboid proxies for smart image manipulation. ACM TOG (SIGGRAPH) 31, 4, 99:1--99:11.

Cited By

View all
  • (2024)Reverse2Complete: Unpaired Multimodal Point Cloud Completion via Guided DiffusionProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680590(5892-5901)Online publication date: 28-Oct-2024
  • (2024)Surface Reconstruction From Point Clouds: A Survey and a BenchmarkIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.342920946:12(9727-9748)Online publication date: 1-Dec-2024
  • (2024)UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.01886(19957-19967)Online publication date: 16-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 31, Issue 6
November 2012
794 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2366145
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2012
Published in TOG Volume 31, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. acquisition
  2. real-time modeling
  3. scene understanding
  4. shape analysis

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)49
  • Downloads (Last 6 weeks)5
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Reverse2Complete: Unpaired Multimodal Point Cloud Completion via Guided DiffusionProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680590(5892-5901)Online publication date: 28-Oct-2024
  • (2024)Surface Reconstruction From Point Clouds: A Survey and a BenchmarkIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.342920946:12(9727-9748)Online publication date: 1-Dec-2024
  • (2024)UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.01886(19957-19967)Online publication date: 16-Jun-2024
  • (2024)3D Room Layout System Using IEC (Interactive Evaluational Computation)Encyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_34(37-51)Online publication date: 5-Jan-2024
  • (2023)Seg&Struct: The Interplay Between Part Segmentation and Structure Inference for 3D Shape Parsing2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV56688.2023.00128(1226-1235)Online publication date: Jan-2023
  • (2023)SceneViewer: Automating Residential Photography in Virtual EnvironmentsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.321483629:12(5523-5537)Online publication date: 1-Dec-2023
  • (2023)Point Cloud Completion Via Skeleton-Detail TransformerIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.318524729:10(4229-4242)Online publication date: 1-Oct-2023
  • (2023)AssetField: Assets Mining and Reconfiguration in Ground Feature Plane Representation2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00301(3228-3238)Online publication date: 1-Oct-2023
  • (2023)Multiview Compressive Coding for 3D Reconstruction2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52729.2023.00875(9065-9075)Online publication date: Jul-2023
  • (2022)Learning generalizable part-based feature representation for 3D point cloudsProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3602395(29305-29318)Online publication date: 28-Nov-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media