Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fabricating BRDFs at high spatial resolution using wave optics

Published: 21 July 2013 Publication History

Abstract

Recent attempts to fabricate surfaces with custom reflectance functions boast impressive angular resolution, yet their spatial resolution is limited. In this paper we present a method to construct spatially varying reflectance at a high resolution of up to 220dpi, orders of magnitude greater than previous attempts, albeit with a lower angular resolution. The resolution of previous approaches is limited by the machining, but more fundamentally, by the geometric optics model on which they are built. Beyond a certain scale geometric optics models break down and wave effects must be taken into account. We present an analysis of incoherent reflectance based on wave optics and gain important insights into reflectance design. We further suggest and demonstrate a practical method, which takes into account the limitations of existing micro-fabrication techniques such as photolithography to design and fabricate a range of reflection effects, based on wave interference.

Supplementary Material

ZIP File (a144-levin.zip)
Supplemental material.
MP4 File (tp073.mp4)

References

[1]
Alldrin, N., and Kriegman., D. 2006. A planar light probe. In CVPR, 2324--2330.
[2]
Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In ACM SIGGRAPH, 65--74.
[3]
Beckmann, P., and Spizzichino, A. 1963. The scattering of electromagnetic waves from rough surfaces. International series of monographs on electromagnetic waves. Pergamon Press.
[4]
Benton, S. A., and Bove, V. M. 2008. Holographic Imaging. Wiley-Interscience.
[5]
Cuypers, T., Haber, T., Bekaert, P., Oh, S. B., and Raskar, R. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5, 122.
[6]
Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1--62:10.
[7]
Finckh, M., Dammertz, H., and Lensch, H. P. A. 2010. Geometry construction from caustic images. In ECCV, Springer-Verlag, 464--477.
[8]
Goodman, J. W. 1968. Introduction to Fourier Optics. McGraw-Hill Book Company.
[9]
Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM SIGGRAPH 29, 3, 61:1--61:10.
[10]
He, X. D., Torrance, K. E., Sillion, F. X., and Greenberg, D. P. 1991. A comprehensive physical model for light reflection. SIGGRAPH 25, 4, 175--186.
[11]
Iwata, F., and Tsujiuchi, J. 1974. Characteristics of a photoresist hologram and its replica. Appl. Opt. 13, 6 (Jun), 1327--1336.
[12]
Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H. 2011. Microgeometry capture using an elastomeric sensor. ACM SIGGRAPH 30, 4, 46:1--46:8.
[13]
Kiser, T., Eigensatz, M., Nguyen, M. M., Bompas, P., and Pauly, M. 2012. Architectural caustics controlling light with geometry. In Advances in Architectural Geometry.
[14]
Koenderink, J., Doorn, A. V., Dana, K., and Nayar, S. 1999. Bidirectional Reflectance Distribution Function of Thoroughly Pitted Surfaces. ICCV 31, 2/3, 129--144.
[15]
Kress, B. C., and Meyrueis, P. 2009. Dynamic Digital Optics. John Wiley & Sons, Ltd, 217--252.
[16]
Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, W., Matusik, W., and Zickler, T. 2013. High spatial resolution BRDFs with metallic powders using wave optics analysis. MIT CSAIL TR 2013--008.
[17]
Lucente, M., and Galyean, T. A. 1995. Rendering interactive holographic images. In SIGGRAPH, 387--394.
[18]
Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3, 20:1--20:11.
[19]
Matsushima, K. 2005. Computer-generated holograms for three-dimensional surface objects with shade and texture. Appl. Opt. 44, 22 (Aug), 4607--4614.
[20]
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM SIGGRAPH Asia 28, 5 (Dec.), 128:1--128:9.
[21]
Nayar, S., K. Ikeuchi, and Kanade, T. 1991. Surface Reflection: Physical and Geometrical Perspectives. PAMI 13, 7 (Jul), 611--634.
[22]
Oren, M., and Nayar, S. 1994. Generalization of Lambert's Reflectance Model. In ACM SIGGRAPH, 239--246.
[23]
Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Eurographics 30, 2 (Apr.), 503--511.
[24]
Patow, G., and Pueyo, X. 2005. A survey of inverse surface design from light transport behavior specification. Comput. Graph. Forum 24, 4, 773--789.
[25]
Patow, G., Pueyo, X., and Vinacua, A. 2007. User-guided inverse reflector design. Comput. Graph. 31, 3 (June), 501--515.
[26]
Pont, S. C., and Koenderink, J. J. 2005. Reflectance from locally glossy thoroughly pitted surfaces. Computer Vision and Image Understanding 98, 2, 211--222.
[27]
Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. In ACM SIGGRAPH, 45:1--45:10.
[28]
Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Rendering Techniques (Proc. Eurographics Workshop on Rendering).
[29]
Sancer, M. 1969. Shadow-corrected electromagnetic scattering from a randomly rough surface. IEEE Transactions on Antennas and Propagation 17, 5 (sep), 577--585.
[30]
Sinzinger, S., and Jahns, J. 2006. Microoptics. John Wiley and Sons.
[31]
Stam, J. 1999. Diffraction shaders. In ACM SIGGRAPH, 101--110.
[32]
Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 9 (Sep), 1105--1112.
[33]
Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why i want a gradient camera. In CVPR, vol. 1, IEEE, 103--110.
[34]
Ulichney, R. 1987. Digital halftoning. MIT press.
[35]
Walker, S. J., and Jahns, J. 1990. Array generation with multilevel phase gratings. J. Opt. Soc. Am. A 7, 8 (Aug), 1509--1513.
[36]
Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In ACM SIGGRAPH, 255--264.
[37]
Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3 (Aug.).
[38]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM SIGGRAPH 28, 3 (Aug.), 32:1--32:6.
[39]
Wolff, L., Nayar, S., and Oren, M. 1998. Improved Diffuse Reflection Models for Computer Vision. IJCV 30, 1 (Oct), 55--71.
[40]
Yaroslavsky, L. 2004. Digital Holography and Digital Image Processing. Kluwer Academic Publishers.
[41]
Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M. A., and Gross, M. H. 2007. A bidirectional light field - hologram transform. Comput. Graph. Forum 26, 3, 435--446.

Cited By

View all
  • (2024)Coherence as Texture - Passive Textureless 3D Reconstruction by Self-Interference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02367(25058-25066)Online publication date: 16-Jun-2024
  • (2023)Close the Design-to-Manufacturing Gap in Computational Optics with a 'Real2Sim' Learned Two-Photon Neural Lithography SimulatorSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618251(1-9)Online publication date: 10-Dec-2023
  • (2023)A Full-Wave Reference Simulator for Computing Surface ReflectanceACM Transactions on Graphics10.1145/359241442:4(1-17)Online publication date: 26-Jul-2023
  • Show More Cited By

Index Terms

  1. Fabricating BRDFs at high spatial resolution using wave optics

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 21 July 2013
      Published in TOG Volume 32, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. BRDF design
      2. fabrication
      3. wave optics

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)54
      • Downloads (Last 6 weeks)8
      Reflects downloads up to 23 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Coherence as Texture - Passive Textureless 3D Reconstruction by Self-Interference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02367(25058-25066)Online publication date: 16-Jun-2024
      • (2023)Close the Design-to-Manufacturing Gap in Computational Optics with a 'Real2Sim' Learned Two-Photon Neural Lithography SimulatorSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618251(1-9)Online publication date: 10-Dec-2023
      • (2023)A Full-Wave Reference Simulator for Computing Surface ReflectanceACM Transactions on Graphics10.1145/359241442:4(1-17)Online publication date: 26-Jul-2023
      • (2023)Orientable Dense Cyclic Infill for Anisotropic Appearance FabricationACM Transactions on Graphics10.1145/359241242:4(1-13)Online publication date: 26-Jul-2023
      • (2023)Scratch-based Reflection Art via Differentiable RenderingACM Transactions on Graphics10.1145/359214242:4(1-12)Online publication date: 26-Jul-2023
      • (2023)Stealth Shaper: Reflectivity Optimization as Surface StylizationACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591542(1-10)Online publication date: 23-Jul-2023
      • (2022)Towards practical physical-optics renderingACM Transactions on Graphics10.1145/3528223.353011941:4(1-24)Online publication date: 22-Jul-2022
      • (2022)Rendering of Subjective Speckle Formed by Rough Statistical SurfacesACM Transactions on Graphics10.1145/347229341:1(1-23)Online publication date: 9-Feb-2022
      • (2022)The visual appearances of disordered optical metasurfacesNature Materials10.1038/s41563-022-01255-921:9(1035-1041)Online publication date: 19-May-2022
      • (2021)Physical light-matter interaction in hermite-gauss spaceACM Transactions on Graphics10.1145/3478513.348053040:6(1-17)Online publication date: 10-Dec-2021
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media