Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Liquid surface tracking with error compensation

Published: 21 July 2013 Publication History

Abstract

Our work concerns the combination of an Eulerian liquid simulation with a high-resolution surface tracker (e.g. the level set method or a Lagrangian triangle mesh). The naive application of a high-resolution surface tracker to a low-resolution velocity field can produce many visually disturbing physical and topological artifacts that limit their use in practice. We address these problems by defining an error function which compares the current state of the surface tracker to the set of physically valid surface states. By reducing this error with a gradient descent technique, we introduce a novel physics-based surface fairing method. Similarly, by treating this error function as a potential energy, we derive a new surface correction force that mimics the vortex sheet equations. We demonstrate our results with both level set and mesh-based surface trackers.

Supplementary Material

ZIP File (a68-bojsen-hansen.zip)
Supplemental material.
MP4 File (tp116.mp4)

References

[1]
Bargteil, A. W., Goktekin, T. G., O'brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics (TOG) 25, 1, 19--38.
[2]
Bojsen-Hansen, M. 2011. A Hybrid Mesh-Grid Approach for Efficient Large Body Water Simulation. Master's thesis, Aarhus University.
[3]
Bridson, R. 2008. Fluid Simulation for Computer Graphics. AK Peters.
[4]
Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472--2493.
[5]
Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 47:1--47:9.
[6]
Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 87--95.
[7]
Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics (SIGGRAPH) 21, 3, 736--744.
[8]
Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proceedings of FEDSM, vol. 3, 4th.
[9]
Goktekin, T., Bargteil, A., and O'Brien, J. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (SIGGRAPH) 23, 3, 463--468.
[10]
Heo, N., and Ko, H.-S. 2010. Detail-preserving fully-eulerian interface tracking framework. ACM Transactions on Graphics (SIGGRAPH Asia) 29, 6, 176:1--176:8.
[11]
Hirt, C., and Nichols, B. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics 39, 1, 201--225.
[12]
Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Transactions on Graphics (SIGGRAPH) 24, 3, 915--920.
[13]
Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Transactions on Graphics (SIGGRAPH) 26, 3, 98:1--98:10.
[14]
Kim, D., Song, O.-y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 5, 120:1--120:7.
[15]
Kim, D., Lee, S. W., young Song, O., and Ko, H.-S. 2012. Baroclinic turbulence with varying density and temperature. IEEE Transactions on Visualization and Computer Graphics 18, 1488--1495.
[16]
Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 114:1--114:9.
[17]
Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics (SIGGRAPH) 23, 3, 457--462.
[18]
McAdams, A., Sifakis, E., and Teran, J. 2010. A parallel multigrid poisson solver for fluids simulation on large grids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 65--74.
[19]
Museth, K. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics (to appear) 32, 3.
[20]
Osher, S., and Fedkiw, R. 2003. Level set methods and dynamic implicit surfaces, vol. 153. Springer.
[21]
Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 261--270.
[22]
Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 5, 121:1--121:10.
[23]
Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics (SIGGRAPH) 31, 4, 112:1--112:8.
[24]
Pozrikidis, C. 2000. Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets. Journal of Fluid Mechanics 425, 335--366.
[25]
Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics (SIGGRAPH) 24, 3, 910--914.
[26]
Stock, M., Dahm, W., and Tryggvason, G. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. Journal of Computational Physics 227, 21, 9021--9043.
[27]
Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 48:1--48:10.
[28]
Williams, B. 2008. Fluid surface reconstruction from particles. Master's thesis, The University Of British Columbia.
[29]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics (SIGGRAPH) 27, 3, 47:1--47:8.
[30]
Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Transactions on Graphics (SIGGRAPH) 28, 3, 76:1--76:10.
[31]
Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 50:1--50:8.
[32]
Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses.
[33]
Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 217--225.
[34]
Yu, J., Wojtan, C., Turk, G., and Yap, C. 2012. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum (Eurographics) 31, 2, 815--824.

Cited By

View all
  • (2024)An Induce-on-Boundary Magnetostatic Solver for Grid-Based FerrofluidsACM Transactions on Graphics10.1145/365812443:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
  • (2024)Fluid SimulationEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_55(725-730)Online publication date: 5-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 4
July 2013
1215 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2461912
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2013
Published in TOG Volume 32, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. level set method
  2. liquid simulation
  3. surface fairing
  4. surface tracking
  5. triangle mesh
  6. vortex sheets

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media