Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Pteromys: interactive design and optimization of free-formed free-flight model airplanes

Published: 27 July 2014 Publication History

Abstract

This paper introduces novel interactive techniques for designing original hand-launched free-flight glider airplanes which can actually fly. The aerodynamic properties of a glider aircraft depend on their shape, imposing significant design constraints. We present a compact and efficient representation of glider aerodynamics that can be fit to real-world conditions using a data-driven method. To do so, we acquire a sample set of glider flight trajectories using a video camera and the system learns a nonlinear relationship between forces on the wing and wing shape. Our acquisition system is much simpler to construct than a wind tunnel, but using it we can efficiently discover a wing model for simple gliding aircraft. Our resulting model can handle general free-form wing shapes and yet agrees sufficiently well with the acquired airplane flight trajectories. Based on this compact aerodynamics model, we present a design tool in which the wing configuration created by a user is interactively optimized to maximize flight-ability. To demonstrate the effectiveness of our tool for glider design by novice users, we compare it with a traditional design workflow.

Supplementary Material

ZIP File (a65-umetani.zip)
Supplemental material.
MP4 File (a65-sidebyside.mp4)

References

[1]
Abbott, I. H. 1959. Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications.
[2]
Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM TOG 28, 3.
[3]
Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM TOG 29, 4.
[4]
Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM TOG 32, 6.
[5]
Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM TOG 32, 4.
[6]
Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM TOG 32, 4.
[7]
Hildebrand, K., Bickel, B., and Alexa, M. 2012. Crdbrd: Shape fabrication by sliding planar slices. CGF 31.
[8]
Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM TOG 24, 3.
[9]
Igarashi, Y., Igarashi, T., and Mitani, J. 2012. Beady: Interactive beadwork design and construction. ACM TOG 31, 4.
[10]
Ju, E., Won, J., Lee, J., Choi, B., Noh, J., and Choi, M. G. 2013. Data-driven control of flapping flight. ACM TOG 32, 5.
[11]
Li, X.-Y., Ju, T., Gu, Y., and Hu, S.-M. 2011. A geometric study of v-style pop-ups: Theories and algorithms. ACM TOG 30, 4.
[12]
Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM TOG 31, 6.
[13]
McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM TOG 30, 6.
[14]
Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM TOG 32, 6.
[15]
Otaduy, M. A., Bickel, B., Bradley, D., and Wang, H. 2012. Data-driven simulation methods in computer graphics: Cloth, tissue and faces. In SIGGRAPH Courses.
[16]
Pai, D. K., Doel, K. v. d., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3D objects. In Proc. SIGGRAPH.
[17]
Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM TOG 32, 4.
[18]
Perkins, C. D., and Hage, R. E. 1949. Airplane Performance, Stability and Control, 1 ed. Wiley, 1.
[19]
Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM TOG 32, 4.
[20]
Schmidt, R., and Ratto, M. 2013. Design-to-fabricate: Maker hardware requires maker software. IEEE CG&A 33, 6.
[21]
Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. CGF 32, 2.
[22]
Shevell, R. S. 1988. Fundamentals of Flight (2nd Edition), 2 ed. Prentice Hall, 8.
[23]
Sobieszczanski-Sobieski, J., and Haftka, R. T. 1997. Multidisciplinary aerospace design optimization: survey of recent developments. Structural optimization 14, 1.
[24]
Song, P., Fu, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM TOG 32, 4.
[25]
Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM TOG 31, 4.
[26]
Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM TOG 30, 4.
[27]
Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM TOG 31, 4.
[28]
Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM TOG 31, 4.
[29]
Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM TOG 30, 4.
[30]
Weissmann, S., and Pinkall, U. 2012. Underwater rigid body dynamics. ACM TOG 31, 4.
[31]
Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM TOG 31, 6.
[32]
Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM TOG 31, 6.

Cited By

View all
  • (2024)Computational Biomimetics of Winged SeedsACM Transactions on Graphics10.1145/368789943:6(1-13)Online publication date: 19-Dec-2024
  • (2023)Joint search of optimal topology and trajectory for planar linkagesInternational Journal of Robotics Research10.1177/0278364921106915642:4-5(176-195)Online publication date: 1-Apr-2023
  • (2023)ThermalRouter: Enabling Users to Design Thermally-Sound DevicesProceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586183.3606747(1-14)Online publication date: 29-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. aerodynamics
  2. fabrication
  3. optimization

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)83
  • Downloads (Last 6 weeks)10
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Computational Biomimetics of Winged SeedsACM Transactions on Graphics10.1145/368789943:6(1-13)Online publication date: 19-Dec-2024
  • (2023)Joint search of optimal topology and trajectory for planar linkagesInternational Journal of Robotics Research10.1177/0278364921106915642:4-5(176-195)Online publication date: 1-Apr-2023
  • (2023)ThermalRouter: Enabling Users to Design Thermally-Sound DevicesProceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586183.3606747(1-14)Online publication date: 29-Oct-2023
  • (2023)Style2Fab: Functionality-Aware Segmentation for Fabricating Personalized 3D Models with Generative AIProceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586183.3606723(1-13)Online publication date: 29-Oct-2023
  • (2023)OPTIMISM: Enabling Collaborative Implementation of Domain Specific Metaheuristic OptimizationProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580904(1-19)Online publication date: 19-Apr-2023
  • (2023)Fabricatable 90° Pop‐ups: Interactive Transformation of a 3D Model into a Pop‐up StructureComputer Graphics Forum10.1111/cgf.1495442:7Online publication date: 30-Oct-2023
  • (2023)EvIcon: Designing High‐Usability Icon with Human‐in‐the‐loop Exploration and IconCLIPComputer Graphics Forum10.1111/cgf.1492442:6Online publication date: 19-Aug-2023
  • (2023)Visual Parameter Space Exploration in Time and SpaceComputer Graphics Forum10.1111/cgf.1478542:6Online publication date: 3-Apr-2023
  • (2023)Interactive design of 2D car profiles with aerodynamic feedbackComputer Graphics Forum10.1111/cgf.1477242:2(427-437)Online publication date: 23-May-2023
  • (2023)Robotic automation and unsupervised cluster assisted modeling for solving the forward and reverse design problem of paper airplanesScientific Reports10.1038/s41598-023-31395-013:1Online publication date: 14-Mar-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media