Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Toward BxDF display using multilayer diffraction

Published: 19 November 2014 Publication History

Abstract

With a wide range of applications in product design and optical watermarking, computational BxDF display has become an emerging trend in the graphics community. In this paper, we analyze the design space of BxDF displays and show that existing approaches cannot reproduce arbitrary BxDFs. In particular, existing surface-based fabrication techniques are often limited to generating only specific angular frequencies, angle-shift-invariant radiance distributions, and sometimes only symmetric BxDFs. To overcome these limitations, we propose diffractive multilayer BxDF displays. We derive forward and inverse methods to synthesize patterns that are printed on stacked, high-resolution transparencies and reproduce prescribed BxDFs with unprecedented degrees of freedom within the limits of available fabrication techniques.

Supplementary Material

ZIP File (a191.zip)
Supplemental material.

References

[1]
Alferness, R. 1975. Analysis of optical propagation in thick holographic gratings. App. Phys. A.
[2]
Baran, I., Keller, P., Bradley, D., Coros, S., Jarosz, W., Nowrouzezahrai, D., and Gross, M. 2012. Manufacturing layered attenuators for multiple prescribed shadow images. Computer Graphics Forum (Proc. EG) 31, 2, 603--610.
[3]
Barbastathis, G. 2000. Volume holographic multiplexing methods. In Holographic Data Storage, H. Coufal, D. Psaltis, and G. Sincerbox, Eds. 21--62.
[4]
Bastiaans, M. 1997. Application of the Wigner distribution function in optics. The Wigner Distribution -- Theory and Applications in Signal Processing, 375--426.
[5]
Benton, S., and Bove, V. 2006. Holographic Imaging. John Wiley and Sons.
[6]
Borgsmüller, S., Noehte, S., Dietrich, C., Kresse, T., and Männer, R. 2003. Computer-generated stratified diffractive optical elements. OSA Appl. Opt. 42, 26, 5274--5283.
[7]
Brady, D., and Psaltis, D. 1992. Control of volume holograms. OSA JOSA A 9, 7, 1167--1182.
[8]
Cuypers, T., Haber, T., Bekaert, P., Oh, S. B., and Raskar, R. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5, 1--11.
[9]
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. ACM SIGGRAPH '00, 145--156.
[10]
Denisyuk, Y. N. 1962. Photographic Reconstruction of the Optical Properties of an Object in Its Own Scattered Radiation Field. Soviet Physics Doklady 7 (Dec.), 543.
[11]
Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, 62:1--62:10.
[12]
Dorsch, R. G., Lohmann, A. W., and Sinzinger, S. 1994. Fresnel Ping-Pong Algorithm for Two-Plane Computer-Generated Hologram Display. OSA Appl. Opt. 33, 5, 869--875.
[13]
Fienup, J. R. 1982. Phase retrieval algorithms: a comparison. OSA Appl. Opt. 21, 15, 2758--2769.
[14]
Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6d reflectance field displays. ACM Trans. Graph. (SIGGRAPH) 27, 3, 58:1--58:8.
[15]
Gerke, T., and Piestun, R. 2010. Aperiodic volume optics. Nature Photonics 10.
[16]
Glasner, D., Zickler, T., and Levin, A. 2014. A Reflectance Display. ACM Trans. Graph. (SIGGRAPH) 33, 4.
[17]
Goodman, J. 2000. Statistical Optics. Wiley.
[18]
Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The Lumigraph. In Proc. ACM SIGGRAPH, 43--54.
[19]
Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, 61:1--61:10.
[20]
Hullin, M. B., Lensch, H. P. A., Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In Computer Graphics Forum (Proc. EG), 475--483.
[21]
Johnson, R. V., and Tanguay, Jr, A. R. 1988. Stratified volume holographic optical elements. OSA Opt. Lett. 13, 3, 189.
[22]
Kajiya, J. T. 1986. The rendering equation. In Proc. ACM SIGGRAPH, 143--150.
[23]
Kämpfe, T., Kley, E.-B., Tünnermann, A., and Dannberg, P. 2007. Design and fabrication of stacked, computer generated holograms for multicolor image generation. OSA Appl. Opt. 46, 22, 5482--5488.
[24]
Kirkpatrick, S., Jr., D. G., and Vecchi, M. P. 1983. Optimization by simmulated annealing. Science 220, 4598, 671--680.
[25]
Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. (SIGGRAPH) 32, 4, 145:1--145:12.
[26]
Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, W., Matusik, W., and Zickler, T. 2013. Fabricating BRDFs at High Spatial Resolution using Wave Optics. ACM Trans. Graph. (SIGGRAPH) 32, 4, 144:1--144:14.
[27]
Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Proc. ACM SIGGRAPH.
[28]
Lucente, M., and Galyean, T. 1995. Rendering interactive holographic images. ACM Trans. Graph. (Proc. SIGGRAPH), 387--394.
[29]
Lucente, M. 1994. Diffraction-Specific Fringe Computation for Electro-Holography. PhD thesis, MIT.
[30]
Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3, 20:1--20:11.
[31]
Masia, B., Wetzstein, G., Didyk, P., and Gutierrez, D. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8, 1012--1038.
[32]
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 28, 5, 128:1--128:9.
[33]
Mok, F. 1993. Angle-mulitplexed storage of 5000 holograms in lithium niobate. OSA Opt. Lett. 18, 11, 915--917.
[34]
Nordin, G. P., Johnson, R. V., and Tanguay, Jr, A. R. 1992. Diffraction properties of stratified volume holographic optical elements. OSA JOSA A 9, 12, 2206.
[35]
Oh, S. B., and Barbastathis, G. 2009. Wigner distribution function of volume holograms. Opt. Lett. 34, 17, 2584--2586.
[36]
Oh, S. B., Kashyap, S., Garg, R., Chandran, S., and Raskar, R. 2010. Rendering Wave Effects with Augmented Light Field. In Computer Graphics Forum (Proc. EG), 507--516.
[37]
Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum (Proc. EG) 30, 2 (Apr.).
[38]
Papas, M., Regg, C., Jarosz, W., Bickel, B., Jackson, P., Matusik, W., Marschner, S., and Gross, M. 2013. Fabricating translucent materials using continuous pigment mixtures. ACM Trans. Graph. (SIGGRAPH) 32, 4, 146:1--146:12.
[39]
Piestun, R., Spektor, B., and Shamir, J. 1996. Wave fields in three dimensions: analysis and synthesis. OSA JOSA A 13, 9, 1837--1848.
[40]
Plesniak, W. J., and Halle, M. 2005. Computed holograms and holographic video display of 3D data. SIGGRAPH Courses.
[41]
Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Proc. EGSR, 11--22.
[42]
Rusinkiewicz, S. M. 1998. A new change of variables for efficient brdf representation. In Proc. EGSR, 11--22.
[43]
Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. (SIGGRAPH) 21, 3, 527--536.
[44]
Testorf, M., Hennelly, B. M., and Ojeda-Castaneda, J. 2009. Phase Space Optics: Fundamentals and Applications. Mcgraw--Hill.
[45]
Walther, A. 1968. Radiometry and Coherence. OSA JOSA A 58, 9, 1256--1259.
[46]
Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. ACM SIGGRAPH 26, 2, 255--264.
[47]
Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30, 1--11.
[48]
Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1--11.
[49]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3.
[50]
Wigner, E. 1932. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 5 (Jun), 749--759.
[51]
Wolf, E. 1978. Coherence and Radiometry. OSA JOSA 68, 1, 6--17.
[52]
Zhang, Z., and Levoy, M. 2009. Wigner Distributions and How They Relate to the Light Field. Proc. IEEE ICCP.

Cited By

View all

Index Terms

  1. Toward BxDF display using multilayer diffraction

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 6
      November 2014
      704 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2661229
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 19 November 2014
      Published in TOG Volume 33, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. computational display
      2. light fields
      3. phase-space optics

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)6
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 02 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2018)Acquiring spatially varying appearance of printed holographic surfacesACM Transactions on Graphics10.1145/3272127.327507737:6(1-16)Online publication date: 4-Dec-2018
      • (2017)Intrinsic Decompositions for Image EditingComputer Graphics Forum10.5555/3128975.312902736:2(593-609)Online publication date: 1-May-2017
      • (2017)Mix-and-match holographyACM Transactions on Graphics10.1145/3130800.313083936:6(1-12)Online publication date: 20-Nov-2017
      • (2017)Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphicsACM Transactions on Graphics10.1145/3130800.313083236:6(1-17)Online publication date: 20-Nov-2017
      • (2017)Printing anisotropic appearance with magnetic flakesACM Transactions on Graphics10.1145/3072959.307370136:4(1-10)Online publication date: 20-Jul-2017
      • (2017)Practical Acquisition and Rendering of Diffraction Effects in Surface ReflectanceACM Transactions on Graphics10.1145/3072959.301200136:4(1)Online publication date: 25-Jul-2017
      • (2017)Practical Acquisition and Rendering of Diffraction Effects in Surface ReflectanceACM Transactions on Graphics10.1145/301200136:5(1-16)Online publication date: 25-Jul-2017
      • (2016)The diffractive achromat full spectrum computational imaging with diffractive opticsACM Transactions on Graphics10.1145/2897824.292594135:4(1-11)Online publication date: 11-Jul-2016
      • (2016)The issue of moral consideration in robot ethicsACM SIGCAS Computers and Society10.1145/2874239.287427845:3(274-279)Online publication date: 5-Jan-2016
      • (2016)Machine learning in decisional processACM SIGCAS Computers and Society10.1145/2874239.287427045:3(218-224)Online publication date: 5-Jan-2016
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media