Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2755996.2756674acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

A Fast Algorithm for Computing the P-curvature

Published: 24 June 2015 Publication History

Abstract

We design an algorithm for computing the p-curvature of a differential system in positive characteristic p. For a system of dimension r with coefficients of degree at most d, its complexity is O~ (p d rω) operations in the ground field (where ω denotes the exponent of matrix multiplication), whereas the size of the output is about p d r2. Our algorithm is then quasi-optimal assuming that matrix multiplication is (i.e. ω = 2). The main theoretical input we are using is the existence of a well-suited ring of series with divided powers for which an analogue of the Cauchy--Lipschitz Theorem holds.

References

[1]
P. Berthelot. Cohomologie cristalline des schémas de caractéristique p>0. Lecture Notes in Mathematics, Vol. 407. Springer-Verlag, Berlin-New York, 1974.
[2]
P. Berthelot and A. Ogus. Notes on crystalline cohomology. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.
[3]
A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, and N. Zenine. Globally nilpotent differential operators and the square Ising model. J. Phys. A, 42(12):125206, 50, 2009.
[4]
A. Bostan, X. Caruso, and E. Schost. A fast algorithm for computing the characteristic polynomial of the p-curvature. In ISSAC'14, pages 59--66. ACM, New York, 2014.
[5]
A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. Fast computation of power series solutions of systems of differential equations. In 18th ACM-SIAM Symposium on Discrete Algorithms, pages 1012--1021, 2007. New Orleans, January 2007.
[6]
A. Bostan and M. Kauers. Automatic classification of restricted lattice walks. In FPSAC'09, DMTCS Proc., AK, pages 201--215. 2009.
[7]
A. Bostan and M. Kauers. The complete generating function for Gessel walks is algebraic. Proc. Amer. Math. Soc., 138(9):3063--3078, 2010. With an appendix by Mark van Hoeij.
[8]
A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. J. Comp., 21(4):420--446, 2005.
[9]
A. Bostan and É. Schost. Fast algorithms for differential equations in positive characteristic. In ISSAC'09, pages 47--54. ACM, New York, 2009.
[10]
S. Boukraa, S. Hassani, J.-M. Maillard, and N. Zenine. Singularities of n-fold integrals of the Ising class and the theory of elliptic curves. J. Phys. A, 40(39):11713--11748, 2007.
[11]
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28(7):693--701, 1991.
[12]
A. Chambert-Loir. Théorèmes d'algébricité en géométrie diophantienne (d'après J.-B. Bost, Y. André, D. & G. Chudnovsky). Séminaire Bourbaki, 282(886):175--209, 2002.
[13]
T. Cluzeau. Factorization of differential systems in characteristic. In ISSAC'03, pages 58--65. ACM Press, 2003.
[14]
T. Cluzeau and M. van Hoeij. A modular algorithm for computing the exponential solutions of a linear differential operator. J. Symbolic Comput., 38(3):1043--1076, 2004.
[15]
F. L. Gall. Powers of tensors and fast matrix multiplication. In ISSAC'14, pages 296--303, 2014.
[16]
J. von zur. Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In ISSAC'97, pages 40--47. ACM, 1997.
[17]
J. gathenvon zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003.
[18]
D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.
[19]
N. M. Katz. Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math., 18:1--118, 1972.
[20]
N. M. Katz. A conjecture in the arithmetic theory of differential equations. Bull. Soc. Math. France, (110):203--239, 1982.
[21]
W. F. Keigher and F. L. Pritchard. Hurwitz series as formal functions. J. Pure Appl. Algebra, 146(3):291--304, 2000.
[22]
M. putvdvan der Put. Differential equations in characteristic p. Compositio Mathematica, 97:227--251, 1995.
[23]
M. putvdvan der Put. Reduction modulo of differential p equations. Indag. Mathem., 7(3):367--387, 1996.
[24]
M. putvdvan der Put and M. Singer. Galois theory of linear differential equations. Springer, 2003.
[25]
F. Rouillier. Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Engrg. Comm. Comput., 9(5):433--461, 1999.
[26]
A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Informatica, 7:395--398, 1977.
[27]
A. Schönhage and V. Strassen. Schnelle Multiplikation groß er Zahlen. Computing, 7:281--292, 1971.
[28]
É. Schost. Multivariate power series multiplication. In ISSAC'05, pages 293--300. ACM, 2005.
[29]
V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal of Symbolic Computation, 17(5):371--391, 1994.
[30]
Y. Tang. Algebraic solutions of differential equations over the projective line minus three points. http://arxiv.org/abs/1412.7875, 2014.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '15: Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation
June 2015
374 pages
ISBN:9781450334358
DOI:10.1145/2755996
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 June 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. differential equations
  2. p-curvature

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC'15
Sponsor:

Acceptance Rates

ISSAC '15 Paper Acceptance Rate 43 of 71 submissions, 61%;
Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Transcendence Certificates for D-finite FunctionsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597091(372-380)Online publication date: 24-Jul-2023
  • (2023)Summation and IntegrationD-Finite Functions10.1007/978-3-031-34652-1_5(393-509)Online publication date: 22-May-2023
  • (2023)OperatorsD-Finite Functions10.1007/978-3-031-34652-1_4(287-391)Online publication date: 22-May-2023
  • (2023)The Differential Case in One VariableD-Finite Functions10.1007/978-3-031-34652-1_3(185-286)Online publication date: 22-May-2023
  • (2023)The Recurrence Case in One VariableD-Finite Functions10.1007/978-3-031-34652-1_2(81-183)Online publication date: 22-May-2023
  • (2023)Background and Fundamental ConceptsD-Finite Functions10.1007/978-3-031-34652-1_1(1-80)Online publication date: 22-May-2023
  • (2020)Computing the N-th term of a q-holonomic sequenceProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404060(46-53)Online publication date: 20-Jul-2020
  • (2016)Computing the Lie Algebra of the Differential Galois Group of a Linear Differential SystemProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930932(63-70)Online publication date: 20-Jul-2016
  • (2016)Computation of the Similarity Class of the p-CurvatureProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930897(111-118)Online publication date: 20-Jul-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media