Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2807442.2807487acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

GelTouch: Localized Tactile Feedback Through Thin, Programmable Gel

Published: 05 November 2015 Publication History

Abstract

We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different activation techniques: 1) Indium Tin Oxide (ITO) as a heating element that enables tactile feedback through individually addressable taxels; 2) predefined tactile areas of engraved ITO, that can be layered and combined; 3) complex arrangements of resistance wire that create thin tactile edges. We present a tablet with 6x4 tactile areas, enabling a tactile numpad, slider, and thumbstick. We show that the gel is up to 25 times stiffer when activated and that users detect tactile features reliably (94.8%).

Supplementary Material

MP4 File (p3.mp4)

References

[1]
Ahmed, Z., Gooding, E. A., Pimenov, K. V., Wang, L., and Asher, S. A. UV resonance raman determination of molecular mechanism of poly (N-isopropylacrylamide) volume phase transition. J. Phys. Chem. A B 113, 13 (2009).
[2]
Amberg, M., Giraud, F., Semail, B., Olivo, P., Casiez, G., and Roussel, N. Stimtac: a tactile input device with programmable friction. In Proc. UIST (2011).
[3]
Bau, O., and Poupyrev, I. Revel: tactile feedback technology for augmented reality. ACM TOG 31, 4 (2012).
[4]
Bau, O., Poupyrev, I., Israr, A., and Harrison, C. Teslatouch: electrovibration for touch surfaces. In Proc. UIST (2010).
[5]
Biet, M., Giraud, F., and Lemaire-Semail, B. Squeeze film effect for the design of an ultrasonic tactile plate. Trans. Ultrason., Ferroelect., Freq. Control 54 (2007).
[6]
Brewster, S., Chohan, F., and Brown, L. Tactile feedback for mobile interactions. In Proc. CHI (2007).
[7]
Casiez, G., Roussel, N., Vanbelleghem, R., and Giraud, F. Surfpad: riding towards targets on a squeeze film effect. In Proc. CHI (2011).
[8]
Ciesla, C., and Yairi, M. User interface system, Sept. 6 2012. US Patent App. 13/414,602, https://www.google.com/patents/US20120223914.
[9]
Dargahi, J., and Najarian, S. Human tactile perception as a standard for artificial tactile sensinga review. INT J MED ROBOT COMP 1, 1 (2004), 23--35.
[10]
Fernandez-Nieves, A., Wyss, H., Mattsson, J., and Weitz, D. A. Microgel suspensions: fundamentals and applications. John Wiley & Sons, 2011.
[11]
Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In Proc. UIST (2012).
[12]
Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. inFORM: Dynamic Physical Affordances and Constraints through Shape and Object Actuation. In Proc. UIST (2013).
[13]
Fujigaya, T., and Nakashima, N. Single-Walled Carbon Nanotubes as a Molecular Heater for Thermoresponsive Polymer Gel Composite. INTECH Open Access Publisher, 2011.
[14]
Gawlitza, K., Turner, S. T., Polzer, F., Wellert, S., Karg, M., Mulvaney, P., and von Klitzing, R. Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties. PCCP 15, 37 (2013).
[15]
Hachisu, T., and Fukumoto, M. Vacuumtouch: attractive force feedback interface for haptic interactive surface using air suction. In Proc. CHI (2014).
[16]
Hafez, M., Khelfaoui, F., Nesnas, H., and Chaillet, N. Monolithic sma large surface with a high density of micro-actuators for tactile displays. In Proc. ACTUATOR (2004).
[17]
Harrison, C., and Hudson, S. E. Providing dynamically changeable physical buttons on a visual display. In Proc. CHI (2009).
[18]
Hertle, Y., Zeiser, M., Fouquet, P., Maccarini, M., and Hellweg, T. The internal network dynamics of poly (NIPAM) based copolymer micro-and macrogels: A comparative neutron spin-echo study. Zeitschrift für Physikalische Chemie 228, 10--12 (2014), 1053--1075.
[19]
Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project feelex: adding haptic surface to graphics. In Proc. SIGGRAPH (2001).
[20]
Jansen, Y., Karrer, T., and Borchers, J. Mudpad: tactile feedback and haptic texture overlay for touch surfaces. In Proc. ITS (2010).
[21]
Kim, J., Nayak, S., and Lyon, L. A. Bioresponsive hydrogel microlenses. J. Am. Chem. Soc. 127, 26 (2005).
[22]
Kim, S.-C., Israr, A., and Poupyrev, I. Tactile rendering of 3d features on touch surfaces. In Proc. UIST (2013).
[23]
Koh, J. T. K. V., Karunanayaka, K., and Nakatsu, R. Linetic: Technical, usability and aesthetic implications of a ferrofluid-based organic user interface. In Proc. INTERACT. 2013.
[24]
Koh, J. T. K. V., Karunanayaka, K., Sepulveda, J., Tharakan, M. J., Krishnan, M., and Cheok, A. D. Liquid interface: a malleable, transient, direct-touch interface. Computers in Entertainment (CIE) 9, 2 (2011), 7.
[25]
Kratz, K., Hellweg, T., and Eimer, W. Structural changes in pnipam microgel particles as seen by sans, dls, and em techniques. Polymer 42, 15 (2001), 6631--6639.
[26]
Leithinger, D., and Ishii, H. Relief: a scalable actuated shape display. In Proc. TEI (2010).
[27]
Lylykangas, J., Surakka, V., Salminen, K., Raisamo, J., Laitinen, P., Rönning, K., and Raisamo, R. Designing tactile feedback for piezo buttons. In Proc. CHI (2011).
[28]
Münstedt, H., and Schwarzl, F. R. Deformation and Flow of Polymeric Materials. Springer, 2014.
[29]
2Osada, Y., and Ross-Murphy, S. B. Intelligent Gels. Scientific American 268 (1993), 82--87.
[30]
Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: interactive visual and shape display for calm computing. In ACM SIGGRAPH Emerging technologies (2004).
[31]
Saga, S., and Raskar, R. Simultaneous geometry and texture display based on lateral force for touchscreen. In World Haptics Conference (2013).
[32]
Srinivasan, M. A., and LaMotte, R. H. Tactual discrimination of softness. J. Neurophysiol. 73, 1 (1995).
[33]
Stanley, A. A., Gwilliam, J. C., and Okamura, A. M. Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In World Haptics Conference (2013).
[34]
Stieger, M., Pedersen, J. S., Lindner, P., and Richtering, W. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? a rheology and small-angle neutron scattering study. Langmuir 20, 17 (2004).
[35]
Strong, R., and Troxel, D. An electrotactile display. IEEE Trans. Man-Mach. Syst 11, 1 (1970).
[36]
Tactus Technology. Tactus technology whitepaper, Sept. 8 2014. http://tactustechnology.com/wp-content/uploads/ 2014/08/White-Paper-New-Tagged-PDF.pdf, retrieved 2015/03/15.
[37]
Wang, C., Flynn, N. T., and Langer, R. Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites. Adv. Mater. 16, 13 (2004).
[38]
Wang, W., Troll, K., Kaune, G., Metwalli, E., Ruderer, M., Skrabania, K., Laschewsky, A., Roth, S., Papadakis, C. M., and Muller-Buschbaum, P. Thin films of poly (N-isopropylacrylamide) end-capped with n-butyltrithiocarbonate. Macromolecules 41, 9 (2008), 3209--3218.
[39]
Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. Pneui: pneumatically actuated soft composite materials for shape changing interfaces. In Proc. UIST (2013).

Cited By

View all
  • (2024)DeformIO: Dynamic Stiffness Control on a Deformable Force-sensing DisplayExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3650772(1-8)Online publication date: 11-May-2024
  • (2024)STButton: Exploring Opportunities for Buttons with Spatio-Temporal Tactile OutputExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3648671(1-5)Online publication date: 11-May-2024
  • (2024)Squishy, Yet Satisfying: Exploring Deformable Shapes' Cross-Modal Correspondences with Colours and EmotionsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3641952(1-20)Online publication date: 11-May-2024
  • Show More Cited By

Index Terms

  1. GelTouch: Localized Tactile Feedback Through Thin, Programmable Gel

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    UIST '15: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology
    November 2015
    686 pages
    ISBN:9781450337793
    DOI:10.1145/2807442
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 November 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. tactile feedback
    2. thermoresponsive hydrogel

    Qualifiers

    • Research-article

    Funding Sources

    • German Federal Ministry of Education and Research
    • ERC

    Conference

    UIST '15

    Acceptance Rates

    UIST '15 Paper Acceptance Rate 70 of 297 submissions, 24%;
    Overall Acceptance Rate 561 of 2,567 submissions, 22%

    Upcoming Conference

    UIST '25
    The 38th Annual ACM Symposium on User Interface Software and Technology
    September 28 - October 1, 2025
    Busan , Republic of Korea

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)83
    • Downloads (Last 6 weeks)13
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)DeformIO: Dynamic Stiffness Control on a Deformable Force-sensing DisplayExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3650772(1-8)Online publication date: 11-May-2024
    • (2024)STButton: Exploring Opportunities for Buttons with Spatio-Temporal Tactile OutputExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3648671(1-5)Online publication date: 11-May-2024
    • (2024)Squishy, Yet Satisfying: Exploring Deformable Shapes' Cross-Modal Correspondences with Colours and EmotionsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3641952(1-20)Online publication date: 11-May-2024
    • (2023)Analysis of Product Architectures of Pin Array Technologies for Tactile DisplaysProceedings of the ACM on Human-Computer Interaction10.1145/36264687:ISS(135-155)Online publication date: 1-Nov-2023
    • (2023)Exploring the Use of Electromagnets to Influence Key Targeting on Physical KeyboardsExtended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544549.3585703(1-8)Online publication date: 19-Apr-2023
    • (2023)Feel the Force, See the Force: Exploring Visual-tactile Associations of Deformable Surfaces with Colours and ShapesProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580830(1-13)Online publication date: 19-Apr-2023
    • (2022)Pulling, Pressing, and Sensing with In-Flat: Transparent Touch Overlay for SmartphonesProceedings of the 2022 International Conference on Advanced Visual Interfaces10.1145/3531073.3531111(1-9)Online publication date: 6-Jun-2022
    • (2022)Morphace: An Integrated Approach for Designing Customizable and Transformative Facial Prosthetic MakeupProceedings of the Augmented Humans International Conference 202210.1145/3519391.3519406(58-67)Online publication date: 13-Mar-2022
    • (2022)ElectriPop: Low-Cost, Shape-Changing Displays Using Electrostatically Inflated Mylar SheetsProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3501837(1-15)Online publication date: 29-Apr-2022
    • (2022)Piezoelectric flexible haptic interface development2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)10.1109/EuroSimE54907.2022.9758912(1-5)Online publication date: 25-Apr-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media