Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2897826.2927303acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
course

Vector field processing on triangle meshes

Published: 24 July 2016 Publication History

Abstract

While scalar fields on surfaces have been staples of geometry processing, the use of tangent vector fields has steadily grown in geometry processing over the last two decades: they are crucial to encode both directions and sizing on surfaces as commonly required in tasks such as texture synthesis, non-photorealistic rendering, digital grooming, and meshing. There are, however, a variety of discrete representations of tangent vector fields on triangle meshes, and each approach offers different trade-offs among simplicity, efficiency, and accuracy depending on the targeted application.
This course reviews the three main families of discretizations used to design computational tools for vector field processing on triangle meshes: face-based, edge-based, and vertex-based representations. In the process of reviewing the computational tools offered by these representations, we go over a large body of recent developments in vector field processing in the area of discrete differential geometry. We also discuss the theoretical and practical limitations of each type of discretization, and cover increasingly-common extensions such as n-direction and n-vector fields.
While the course will focus on explaining the key approaches to practical encoding (including data structures) and manipulation (including discrete operators) of finite-dimensional vector fields, important differential geometric notions will also be covered: as often in Discrete Differential Geometry, the discrete picture will be used to illustrate deep continuous concepts such as covariant derivatives, metric connections, or Bochner Laplacians.

Supplementary Material

MP4 File (a27.mp4)

References

[1]
Abraham, R., Marsden, J. E., and Ratiu, R. 1988. Manifolds, Tensor Analysis, and Applications: 2nd Edition. Springer-Verlag.
[2]
Andersen, V., Desbrun, M., Brentzen, J., and Aans, H. 2009. Height and tilt geometric texture. In Advances in Visual Computing, vol. 5875 of Lecture Notes in Computer Science. Springer, 656--667.
[3]
Arnold, D. N., Falk, R. S., and Winther, R. 2006. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1--155.
[4]
Azencot, O., Ben-Chen, M., Chazal, F., and Ovsjanikov, M. 2013. An operator approach to tangent vector field processing. Comp. Graph. Forum 32, 5, 73--82.
[5]
Azencot, O., Ovsjanikov, M., Chazal, F., and Ben-Chen, M. 2015. Discrete derivatives of vector fields on surfaces -- an operator approach. ACM Trans. Graph. 34, 3.
[6]
Ben-Chen, M., Butscher, A., Solomon, J., and Guibas, L. 2010. On discrete killing vector fields and patterns on surfaces. Comp. Graph. Forum 29, 5, 1701--1711.
[7]
Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3.
[8]
Bossavit, A., and Kettunen, L. 1999. Yee-schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Num. Model. 12, 129--142.
[9]
Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In Proc. ACM/SIGGRAPH Conf., 263--270.
[10]
Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Comp. Graph. Forum 29, 1525--1533.
[11]
Crane, K., de Goes, F., Desbrun, M., and Schrder, P. 2013. Digital Geometry Processing with Discrete Exterior Calculus. Course Notes. ACM SIGGRAPH.
[12]
de Goes, F., and Crane, K., 2010. A simplified algorithm for simply-connected surfaces. Caltech CMS technical report.
[13]
de Goes, F., Liu, B., Budninskiy, M., Tong, Y., and Desbrun, M. 2014. Discrete 2-tensor fields on triangulations. Comp. Graph. Forum 33, 5, 13--24.
[14]
de Goes, F., Desbrun, M., Meyer, M., and DeRose, T. 2016. Subdivision exterior calulcus for geometry processing. ACM Trans. Graph. 35(4).
[15]
Desbrun, M., and de Goes, F. 2014. The power of orthogonal duals. In Mathematical Progress in Expressive Image Synthesis I, vol. 4 of Mathematics for Industry.
[16]
Desbrun, M., Kanso, E., and Tong, Y. 2006. Discrete differential forms for computational modeling. {Grinspun et al. 2006}.
[17]
Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing n-polyvector fields with complex polynomials. Comp. Graph. Forum 33, 5.
[18]
Dodziuk, J., and Patodi, V. K. 1976. Riemannian structures and triangulations of manifolds. J. Ind. Math. Soc. 40, 1--4, 1--52.
[19]
Eisenberg, M., and Guy, R. 1979. A proof of the hairy ball theorem. The American Mathematical Monthly 86, 7, 571--574.
[20]
Elcott, S., and Schröder, P. 2006. Building your own DEC at home. {Grinspun et al. 2006}.
[21]
Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1.
[22]
Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3.
[23]
Gawlik, E., Mullen, P., Pavlov, D., Marsden, J., and Desbrun, M. 2011. Geometric, variational discretization of continuum theories. Physica D: Nonlinear Phenomena 240, 21, 1724--1760.
[24]
Gortler, S. J., Gotsman, C., and Thurston, D. 2006. Discrete one-forms on meshes and applications to 3d mesh parameterization. Comput. Aided Geom. Des. 33, 2, 83--112.
[25]
Grimm, C. M., and Hughes, J. F. 1995. Modeling surfaces of arbitrary topology using manifolds. In Proc. ACM/SIGGRAPH Conf., 359--368.
[26]
Grinspun, E., Schröder, P., and Desbrun, M. 2006. Discrete Differential Geometry. Course Notes. ACM SIGGRAPH.
[27]
Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Proc. Symp. Geom. Proc., 127--137.
[28]
Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proc. ACM/SIGGRAPH Conf., 517--526.
[29]
Hirani, A. N. 2003. Discrete Exterior Calculus. PhD thesis, Caltech.
[30]
Kalberer, F., Nieser, M., and Polthier, K. 2007. Quadcover: Surface parameterization using branched coverings. Comp. Graph. Forum 26, 3, 375--384.
[31]
Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4.
[32]
Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4.
[33]
Koopman, B. O. 1931. Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences 17, 315--318.
[34]
Liu, B.-B., Weng, Y.-L., Wang, J.-N., and Tong, Y.-Y. 2013. Orientation field guided texture synthesis. Journal of Computer Science and Technology 28, 5.
[35]
Liu, B., Tong, Y., de Goes, F., and Desbrun, M. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. 35(3), Art. 23.
[36]
MacNeal, R. 1949. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis, Caltech.
[37]
Mebarki, A., Alliez, P., and Devillers, O. 2005. Farthest point seeding for efficient placement of streamlines. In IEEE Visualization, 479--486.
[38]
Mercat, C. 2001. Discrete Riemannian surfaces and the Ising model. Comm. in Math. Physics 218, 1, 177--216.
[39]
Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3.
[40]
Nédélec, J.-C. 1980. Mixed finite elements in R<sup>3</sup>. Numer. Math. 35, 315--341.
[41]
Nieser, M., Palacios, J., Polthier, K., and Zhang, E. 2012. Hexagonal global parameterization of arbitrary surfaces. IEEE Trans. Vis. Comp. Graph. 18, 6, 865--878.
[42]
Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3.
[43]
Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. 2012. Fields on symmetric surfaces. ACM Trans. Graph. 31, 4.
[44]
Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J., and Desbrun, M. 2011. Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6, 443--458.
[45]
Polthier, K., and Preuss, E. 2000. Variational approach to vector field decomposition. In Data Visualization, Eurographics. 147--155.
[46]
Polthier, K., and Preuss, E. 2003. Identifying vector field singularities using a discrete Hodge decomposition. In Vis. and Math. III. 113--134.
[47]
Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485.
[48]
Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2.
[49]
Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1.
[50]
Rufat, D., Mason, G., Mullen, P., and Desbrun, M. 2014. The chain collocation method: a spectrally accurate calculus of forms. Journal of Computational Physics 257, Part B, 1352--1372.
[51]
Spivak, M. 1979. A comprehensive introduction to differential geometry. Vol. II (2nd edition). Publish or Perish Inc.
[52]
Tong, Y., Lombeyda, S., Hirani, A. N., and Desbrun, M. 2003. Discrete multiscale vector field decomposition. ACM Trans. Graph. 22, 3, 445--452.
[53]
Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. Symp. Geom. Proc., 201--210.
[54]
Vaxman, A., Campen, M., Diamanti, O., Panozzo, D., Bommes, D., Hildebrandt, K., and Ben-Chen, M. 2016. Directional Field Synthesis, Design, and Processing. Course Notes. Eurographics.
[55]
Wang, K., Weiwei, Tong, Y., Desbrun, M., and Schröder, P. 2006. Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25, 3, 1041--1048.
[56]
Wardetzky, M. 2006. Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation. PhD thesis, Freie Universität Berlin.
[57]
Whitney, H. 1957. Geometric Integration Theory. Princeton University Press.
[58]
Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294--1326.

Cited By

View all
  • (2024)An intrinsic vector heat networkProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692654(14638-14650)Online publication date: 21-Jul-2024
  • (2024)Hodge decomposition of vector fields in Cartesian gridsSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687602(1-10)Online publication date: 3-Dec-2024
  • (2024)A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry ProcessingACM Transactions on Graphics10.1145/367365243:5(1-26)Online publication date: 9-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '16: ACM SIGGRAPH 2016 Courses
July 2016
1735 pages
ISBN:9781450342896
DOI:10.1145/2897826
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 July 2016

Check for updates

Qualifiers

  • Course

Conference

SIGGRAPH '16
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)106
  • Downloads (Last 6 weeks)11
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An intrinsic vector heat networkProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692654(14638-14650)Online publication date: 21-Jul-2024
  • (2024)Hodge decomposition of vector fields in Cartesian gridsSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687602(1-10)Online publication date: 3-Dec-2024
  • (2024)A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry ProcessingACM Transactions on Graphics10.1145/367365243:5(1-26)Online publication date: 9-Aug-2024
  • (2024)Lifting Directional Fields to Minimal SectionsACM Transactions on Graphics10.1145/365819843:4(1-20)Online publication date: 19-Jul-2024
  • (2024)Singular Foliations for Knit Graph DesignACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657487(1-11)Online publication date: 13-Jul-2024
  • (2024)Surface-Based Probabilistic Fiber Tracking in Superficial White MatterIEEE Transactions on Medical Imaging10.1109/TMI.2023.332945143:3(1113-1124)Online publication date: Mar-2024
  • (2024)Fabrication-aware strip-decomposable quadrilateral meshesComputer-Aided Design10.1016/j.cad.2023.103666168:COnline publication date: 1-Mar-2024
  • (2023)Complex Wrinkle Field EvolutionACM Transactions on Graphics10.1145/359239742:4(1-19)Online publication date: 26-Jul-2023
  • (2023)Spectral Coarsening with Hodge LaplaciansACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591544(1-11)Online publication date: 23-Jul-2023
  • (2023)Metric-Driven 3D Frame Field GenerationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.313619929:4(1964-1976)Online publication date: 1-Apr-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media