Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3132847.3133027acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article
Public Access

Detecting Multiple Periods and Periodic Patterns in Event Time Sequences

Published: 06 November 2017 Publication History
  • Get Citation Alerts
  • Abstract

    Periodicity is prevalent in physical world, and many events involve more than one periods, eg individual's mobility, tide pattern, and massive transportation utilization. Knowing the true periods of events can benefit a number of applications, such as traffic prediction, time-aware recommendation and advertisement, and anomaly detection. However, detecting multiple periods is a very challenging task due to not only the interwoven periodic patterns but also the low quality of event tracking records. In this paper, we study the problem of discovering all true periods and the corresponded occurring patterns of an event from a noisy and incomplete observation sequence. We devise a novel scoring function, by maximizing which we can identify the true periodic patterns involved in the sequence. We prove that, however, optimizing the objective function is an NP-hard problem. To address this challenge, we develop a heuristic algorithm named Timeslot Coverage Model (TiCom), for identifying the periods and periodic patterns approximately. The results of extensive experiments on both synthetic and real-life datasets show that our model outperforms the state-of-the-art baselines significantly in various tasks, including period detection, periodic pattern identification, and anomaly detection.

    References

    [1]
    Tide, from wikipedia. https://en.wikipedia.org/wiki/Tide.
    [2]
    M. Ahdesm"aki, H. L"ahdesm"aki, A. Gracey, and O. Yli-Harja. Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC bioinformatics, 8(1):233, 2007.
    [3]
    J. Barkley Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6:6z--9z, 1962.
    [4]
    C. Berberidis, W. G. Aref, M. Atallah, I. Vlahavas, and A. K. Elmagarmid. Multiple and partial periodicity mining in time series databases. In ECAI, volume 2, pages 370--374, 2002.
    [5]
    E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In Proc. KDD, pages 1082--1090. ACM, 2011.
    [6]
    R. B. Cleveland, W. S. Cleveland, and I. Terpenning. Stl: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1):3, 1990.
    [7]
    C. Ding, D. Pei, and A. Salomaa. Chinese remainder theorem: applications in computing, coding, cryptography. World Scientific, 1996.
    [8]
    N. Eagle and A. Pentland. Reality mining: sensing complex social systems. Personal and ubiquitous computing, 10(4):255--268, 2006.
    [9]
    M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Periodicity detection in time series databases. TKDE, 17(7):875--887, 2005.
    [10]
    M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Warp: time warping for periodicity detection. In Proc. ICDM, pages 8--pp. IEEE, 2005.
    [11]
    M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Stagger: Periodicity mining of data streams using expanding sliding windows. In Proc. ICDM, pages 188--199. IEEE, 2006.
    [12]
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
    [13]
    E. F. Glynn, J. Chen, and A. R. Mushegian. Detecting periodic patterns in unevenly spaced gene expression time series using lomb--scargle periodograms. Bioinformatics, 22(3):310--316, 2006.
    [14]
    J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. In Proc. ICDE, pages 106--115. IEEE, 1999.
    [15]
    J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related databases. In Proc. KDD, pages 214--218, 1998.
    [16]
    I. Junier, J. Hérisson, and F. Képès. Periodic pattern detection in sparse boolean sequences. Algorithms for Molecular Biology, 5(1):1, 2010.
    [17]
    Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In Proc. KDD, pages 1099--1108. ACM, 2010.
    [18]
    Z. Li, J. Wang, and J. Han. Mining event periodicity from incomplete observations. In Proc. KDD, pages 444--452. ACM, 2012.
    [19]
    Z. Li, J. Wang, and J. Han. eperiodicity: Mining event periodicity from incomplete observations. TKDE, 27(5):1219--1232, 2015.
    [20]
    N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39(2):447--462, 1976.
    [21]
    S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown periods. In Proc. ICDE, pages 205--214. IEEE, 2001.
    [22]
    M. A. Nishi, C. F. Ahmed, M. Samiullah, and B.-S. Jeong. Effective periodic pattern mining in time series databases. Expert Systems with Applications, 40(8):3015--3027, 2013.
    [23]
    B. Özden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proc. ICDE, pages 412--421. IEEE, 1998.
    [24]
    S. Parthasarathy, S. Mehta, and S. Srinivasan. Robust periodicity detection algorithms. In Proc. CIKM, pages 874--875. ACM, 2006.
    [25]
    F. Rasheed, M. Alshalalfa, and R. Alhajj. Efficient periodicity mining in time series databases using suffix trees. TKDE, 23(1):79--94, 2011.
    [26]
    S. Shang, D. Guo, J. Liu, and J.-R. Wen. Prediction-based unobstructed route planning. Neurocomputing, 213:147--154, 2016.
    [27]
    C. Sheng, W. Hsu, and M. Li Lee. Mining dense periodic patterns in time series data. In Proc. ICDE, pages 115--115. IEEE, 2006.
    [28]
    G. Sirisha, M. Shashi, and G. P. Raju. Periodic pattern mining--algorithms and applications. Global Journal of Computer Science and Technology, 13(13), 2014.
    [29]
    H. Van Dongen, E. Olofsen, J. Van Hartevelt, and E. Kruyt. A procedure of multiple period searching in unequally spaced time-series with the lomb--scargle method. Biological Rhythm Research, 30(2):149--177, 1999.
    [30]
    M. Vlachos, S. Y. Philip, and V. Castelli. On periodicity detection and structural periodic similarity. In Proc. SDM, volume 5, pages 449--460. SIAM, 2005.
    [31]
    W. Wang, J. Yang, and P. S. Yu. Meta-patterns: revealing hidden periodic patterns. In Proc. ICDM, pages 550--557. IEEE, 2001.
    [32]
    B. Xu, Z. Ding, and H. Chen. Mining multiple periods in event time sequence. In Advances in Services Computing, pages 278--288. Springer, 2015.
    [33]
    J. Yang, W. Wang, and P. S. Yu. Infominer: mining surprising periodic patterns. In Proc. KDD, pages 395--400. ACM, 2001.
    [34]
    J. Yang, W. Wang, and P. S. Yu. Infominer
    [35]
    : mining partial periodic patterns with gap penalties. In Proc. ICDM, pages 725--728. IEEE, 2002.
    [36]
    J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data. TKDE, 15(3):613--628, 2003.
    [37]
    K.-J. Yang, T.-P. Hong, Y.-M. Chen, and G.-C. Lan. Projection-based partial periodic pattern mining for event sequences. Expert Systems with Applications, 40(10):4232--4240, 2013.
    [38]
    W. Yang and G. Lee. Efficient partial multiple periodic patterns mining without redundant rules. In Proc. COMPSAC, pages 430--435. IEEE, 2004.
    [39]
    Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-of-interest recommendation. In Proc. SIGIR, pages 363--372, 2013.
    [40]
    Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Who, where, when and what: discover spatio-temporal topics for twitter users. In Proc. KDD, pages 605--613, 2013.
    [41]
    Q. Yuan, W. Zhang, C. Zhang, X. Geng, G. Cong, and J. Han. Pred: Periodic region detection for mobility modeling of social media users. In Proc. WSDM, pages 263--272. ACM, 2017.
    [42]
    C. Zhang, J. Han, L. Shou, J. Lu, and T. F. L. Porta. Splitter: Mining fine-grained sequential patterns in semantic trajectories. PVLDB, 7(9):769--780, 2014.
    [43]
    C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han. Gmove: Group-level mobility modeling using geo-tagged social media. In Proc. KDD, pages 1305--1314, 2016.

    Cited By

    View all
    • (2024)HYBRID FOURIER ASYMMETRIC-GARCH ESTIMATION OF VALUE AT RISK AND EXPECTED SHORTFALL: EMPIRICAL EVIDENCE FROM CRUDE OIL PRICESHeliyon10.1016/j.heliyon.2024.e33718(e33718)Online publication date: Jun-2024
    • (2024)Autonomous integration of TSN-unaware applications with QoS requirements in TSN networksComputer Communications10.1016/j.comcom.2024.04.021222(118-129)Online publication date: Jun-2024
    • (2023)HyperCalm Sketch: One-Pass Mining Periodic Batches in Data Streams2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00009(14-26)Online publication date: Apr-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CIKM '17: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
    November 2017
    2604 pages
    ISBN:9781450349185
    DOI:10.1145/3132847
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 November 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. anomaly detection
    2. np hard
    3. periodicity detection
    4. sequence mining

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CIKM '17
    Sponsor:

    Acceptance Rates

    CIKM '17 Paper Acceptance Rate 171 of 855 submissions, 20%;
    Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)184
    • Downloads (Last 6 weeks)15

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)HYBRID FOURIER ASYMMETRIC-GARCH ESTIMATION OF VALUE AT RISK AND EXPECTED SHORTFALL: EMPIRICAL EVIDENCE FROM CRUDE OIL PRICESHeliyon10.1016/j.heliyon.2024.e33718(e33718)Online publication date: Jun-2024
    • (2024)Autonomous integration of TSN-unaware applications with QoS requirements in TSN networksComputer Communications10.1016/j.comcom.2024.04.021222(118-129)Online publication date: Jun-2024
    • (2023)HyperCalm Sketch: One-Pass Mining Periodic Batches in Data Streams2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00009(14-26)Online publication date: Apr-2023
    • (2022)PeriodicSketch: Finding Periodic Items in Data Streams2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00012(96-109)Online publication date: May-2022
    • (2021)RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity DetectionProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3452779(2328-2337)Online publication date: 9-Jun-2021
    • (2021)Detecting Network Attacks Exhibiting Irregular Periodic Behavior2021 International Symposium on Networks, Computers and Communications (ISNCC)10.1109/ISNCC52172.2021.9615739(1-7)Online publication date: 31-Oct-2021
    • (2021)Modeling multivariate clinical event time-series with recurrent temporal mechanismsArtificial Intelligence in Medicine10.1016/j.artmed.2021.102021112(102021)Online publication date: Mar-2021
    • (2021)Collective periodic pattern discovery for understanding human mobilityCluster Computing10.1007/s10586-020-03220-0Online publication date: 4-Jan-2021
    • (2020)Matrix calculation of correlation characteristics based on spectral methodsТехнология и конструирование в электронной аппаратуре10.15222/TKEA2020.3-4.11(11-16)Online publication date: 2020
    • (2020)Lightweight Timeslot Scheduling Through Periodicity Detection for Increased Scalability of LoRaWAN2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM)10.1109/WoWMoM49955.2020.00017(8-15)Online publication date: Aug-2020
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media