Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Dynamical optimal transport on discrete surfaces

Published: 04 December 2018 Publication History

Abstract

We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows.

Supplementary Material

ZIP File (a250-lavenant.zip)
Supplemental files.

References

[1]
Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. 2008. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media.
[2]
Franz Aurenhammer, Friedrich Hoffmann, and Boris Aronov. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1 (1998), 61--76.
[3]
Omri Azencot, Orestis Vantzos, and Mirela Ben-Chen. 2016. Advection-based function matching on surfaces. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 55--64.
[4]
Jean-David Benamou and Yann Brenier. 2000. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 3 (2000), 375--393.
[5]
Jean-David Benamou and Guillaume Carlier. 2015. Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. Journal of Optimization Theory and Applications 167, 1 (2015), 1--26.
[6]
Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. 2015. Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing 37, 2 (2015), A1111--A1138.
[7]
Jean-David Benamou, Guillaume Carlier, and Maxime Laborde. 2016. An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM: Proceedings and Surveys 54 (2016), 1--17.
[8]
Jean-David Benamou, Guillaume Carlier, and Filippo Santambrogio. 2017. Variational mean field games. In Active Particles, Volume 1. Springer, 141--171.
[9]
Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011. Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 158.
[10]
Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1--122.
[11]
Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
[12]
Yann Brenier. 1991. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics 44, 4 (1991), 375--417.
[13]
Susanne Brenner and Ridgway Scott. 2007. The Mathematical Theory of Finite Element Methods. Vol. 15. Springer Science & Business Media.
[14]
Shui-Nee Chow, Luca Dieci, Wuchen Li, and Haomin Zhou. 2016. Entropy dissipation semi-discretization schemes for Fokker-Planck equations. arXiv:1608.02628 (2016).
[15]
Sebastian Claici, Edward Chien, and Justin Solomon. 2018. Stochastic Wasserstein barycenters. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018 (to appear).
[16]
Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, NIPS 2013. 2292--2300.
[17]
Marco Cuturi and Arnaud Doucet. 2014. Fast computation of Wasserstein barycenters. In International Conference on Machine Learning. 685--693.
[18]
Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun. 2012. Blue noise through optimal transport. ACM Transactions on Graphics (TOG) 31, 6 (2012), 171.
[19]
Fernando de Goes, David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 1593--1602.
[20]
Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2015a. Vector field processing on triangle meshes. In SIGGRAPH Asia 2015 Courses. ACM, 17.
[21]
Fernando de Goes, Pooran Memari, Patrick Mullen, and Mathieu Desbrun. 2014. Weighted Triangulations for Geometry Processing. ACM Trans. Graph. 33, 3 (June 2014), 28:1--28:13.
[22]
Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. 2015b. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34, 4 (2015), 50--1.
[23]
Julie Digne, David Cohen-Steiner, Pierre Alliez, Fernando De Goes, and Mathieu Desbrun. 2014. Feature-preserving surface reconstruction and simplification from defect-laden point sets. Journal of Mathematical Imaging and Vision 48, 2 (2014), 369--382.
[24]
Jack Edmonds and Richard M Karp. 1972. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM) 19, 2 (1972), 248--264.
[25]
Matthias Erbar, Martin Rumpf, Bernhard Schmitzer, and Stefan Simon. 2017. Computation of Optimal Transport on Discrete Metric Measure Spaces. arXiv:1707.06859 (2017).
[26]
Thomas O Gallouët and Quentin Mérigot. 2017. A Lagrangian scheme à la Brenier for the incompressible Euler equations. Foundations of Computational Mathematics (2017), 1--31.
[27]
Wilfrid Gangbo and Robert J McCann. 1996. The geometry of optimal transportation. Acta Mathematica 177, 2 (1996), 113--161.
[28]
Nicola Gigli and Jan Maas. 2013. Gromov-Hausdorff convergence of discrete transportation metrics. SIAM Journal on Mathematical Analysis 45, 2 (2013), 879--899.
[29]
Peter Gladbach, Eva Kopfer, and Jan Maas. 2018. Scaling limits of discrete optimal transport. arXiv:1809.01092 (2018).
[30]
Michael Grant and Stephen Boyd. 2008. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura (Eds.). Springer-Verlag Limited, 95--110.
[31]
Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. http://cvxr.com/cvx.
[32]
Kevin Guittet. 2003. On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques. SIAM J. Numer. Anal. 41, 1 (2003), 382--399.
[33]
Behrend Heeren, Martin Rumpf, Max Wardetzky, and Benedikt Wirth. 2012. Time-Discrete Geodesics in the Space of Shells. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1755--1764.
[34]
Romain Hug, Nicolas Papadakis, and Emmanuel Maitre. 2015. On the convergence of augmented Lagrangian method for optimal transport between nonnegative densities. (2015).
[35]
Richard Jordan, David Kinderlehrer, and Felix Otto. 1998. The variational formulation of the Fokker-Planck equation. SIAM Journal on Mathematical Analysis 29, 1 (1998), 1--17.
[36]
Jürgen Jost. 2008. Riemannian geometry and geometric analysis. Vol. 42005. Springer.
[37]
Leonid V Kantorovich. 1942. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS), Vol. 37. 199--201.
[38]
Jun Kitagawa, Quentin Mérigot, and Boris Thibert. 2016. Convergence of a Newton algorithm for semi-discrete optimal transport. arXiv preprint arXiv:1603.05579 (2016).
[39]
Morton Klein. 1967. A primal method for minimal cost flows with applications to the assignment and transportation problems. Management Science 14, 3 (1967), 205--220.
[40]
Hugo Lavenant. 2017. Harmonic mappings valued in the Wasserstein space. arXiv:1712.07528 (2017).
[41]
Bruno Lévy. 2015. A numerical algorithm for L<sub>2</sub> semi-discrete optimal transport in 3D. ESAIM: Mathematical Modelling and Numerical Analysis 49, 6 (2015), 1693--1715.
[42]
Wuchen Li, Ernest K Ryu, Stanley Osher, Wotao Yin, and Wilfrid Gangbo. 2018. A parallel method for earth mover's distance. Journal of Scientific Computing 75, 1 (2018), 182--197.
[43]
Zhuoran Lu. 2017. Properties of Soft Maps on Riemannian Manifolds. Ph.D. Dissertation. New York University.
[44]
Jan Maas. 2011. Gradient flows of the entropy for finite Markov chains. Journal of Functional Analysis 261, 8 (2011), 2250--2292.
[45]
Bertrand Maury, Aude Roudneff-Chupin, and Filippo Santambrogio. 2010. A macroscopic crowd motion model of gradient flow type. Mathematical Models and Methods in Applied Sciences 20, 10 (2010), 1787--1821.
[46]
Robert J McCann. 1997. A convexity principle for interacting gases. Advances in Mathematics 128, 1 (1997), 153--179.
[47]
Quentin Mérigot. 2011. A multiscale approach to optimal transport. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 1583--1592.
[48]
Quentin Mérigot, Jocelyn Meyron, and Boris Thibert. 2018. An algorithm for optimal transport between a simplex soup and a point cloud. SIAM Journal on Imaging Sciences 11, 2 (2018), 1363--1389.
[49]
Quentin Mérigot and Jean-Marie Mirebeau. 2016. Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM J. Numer. Anal. 54, 6 (2016), 3465--3492.
[50]
MOSEK ApS. 2017. The MOSEK optimization toolbox for MATLAB manual.
[51]
James B Orlin. 1997. A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming 78, 2 (1997), 109--129.
[52]
Felix Otto. 2001. The geometry of dissipative evolution equations: the porous medium equation. (2001).
[53]
Daniele Panozzo, Ilya Baran, Olga Diamanti, and Olga Sorkine-Hornung. 2013. Weighted averages on surfaces. ACM Transactions on Graphics (TOG) 32, 4 (2013), 60.
[54]
Nicolas Papadakis, Gabriel Peyré, and Edouard Oudet. 2014. Optimal transport with proximal splitting. SIAM Journal on Imaging Sciences 7, 1 (2014), 212--238.
[55]
Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993), 15--36.
[56]
Konrad Polthier and Markus Schmies. 2006. Straightest geodesics on polyhedral surfaces. ACM.
[57]
Filippo Santambrogio. 2015. Optimal transport for applied mathematicians. Birkäuser, NY (2015), 99--102.
[58]
Filippo Santambrogio. 2018. Crowd motion and evolution PDEs under density constraints.
[59]
Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on Graphics (TOG) 34, 4 (2015), 66.
[60]
Justin Solomon, Leonidas Guibas, and Adrian Butscher. 2013. Dirichlet energy for analysis and synthesis of soft maps. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 197--206.
[61]
Justin Solomon, Andy Nguyen, Adrian Butscher, Mirela Ben-Chen, and Leonidas Guibas. 2012. Soft maps between surfaces. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1617--1626.
[62]
Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. 2014. Earth mover's distances on discrete surfaces. ACM Transactions on Graphics (TOG) 33, 4 (2014), 67.
[63]
Nicolas Garcia Trillos. 2017. Gromov-Hausdorff limit of Wasserstein spaces on point clouds. arXiv:1702.03464 (2017).
[64]
Juan Luis Vázquez. 2007. The Porous Medium Equation: Mathematical Theory. Oxford University Press.
[65]
Cédric Villani. 2003. Topics in Optimal Transportation. Number 58. American Mathematical Soc.
[66]
Cédric Villani. 2008. Optimal Transport: Old and New. Vol. 338. Springer Science & Business Media.

Cited By

View all
  • (2025)Propagation of Chaos for Mean Field Schrödinger ProblemsSIAM Journal on Control and Optimization10.1137/23M156671663:1(112-150)Online publication date: 8-Jan-2025
  • (2025)A universal network strategy for lightspeed computation of entropy-regularized optimal transportNeural Networks10.1016/j.neunet.2024.107038184(107038)Online publication date: Apr-2025
  • (2025)Gradient enhanced ADMM Algorithm for dynamic optimal transport on surfacesJournal of Computational Physics10.1016/j.jcp.2025.113805(113805)Online publication date: Feb-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 37, Issue 6
December 2018
1401 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3272127
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 December 2018
Published in TOG Volume 37, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. discrete differential geometry
  2. optimal transport
  3. wasserstein distance

Qualifiers

  • Research-article

Funding Sources

  • MIT-IBM Watson AI Laboratory
  • Army Research Office
  • Amazon Research Award
  • Skoltech-MIT Next Generation Program
  • MIT Research Support Committee

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)315
  • Downloads (Last 6 weeks)28
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Propagation of Chaos for Mean Field Schrödinger ProblemsSIAM Journal on Control and Optimization10.1137/23M156671663:1(112-150)Online publication date: 8-Jan-2025
  • (2025)A universal network strategy for lightspeed computation of entropy-regularized optimal transportNeural Networks10.1016/j.neunet.2024.107038184(107038)Online publication date: Apr-2025
  • (2025)Gradient enhanced ADMM Algorithm for dynamic optimal transport on surfacesJournal of Computational Physics10.1016/j.jcp.2025.113805(113805)Online publication date: Feb-2025
  • (2025)Unbalanced L1 optimal transport for vector valued measures and application to Full Waveform InversionJournal of Computational Physics10.1016/j.jcp.2024.113657523(113657)Online publication date: Feb-2025
  • (2025)A time-fractional optimal transport: Formulation and algorithmComputers & Mathematics with Applications10.1016/j.camwa.2025.01.009180(261-278)Online publication date: Feb-2025
  • (2024)Learning ultrametric trees for optimal transport regressionProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i18.30052(20657-20665)Online publication date: 20-Feb-2024
  • (2024)Efficient Preconditioners for Solving Dynamical Optimal Transport via Interior Point MethodsSIAM Journal on Scientific Computing10.1137/23M157043046:3(A1397-A1422)Online publication date: 2-May-2024
  • (2024)On the convergence of discrete dynamic unbalanced transport modelsESAIM: Mathematical Modelling and Numerical Analysis10.1051/m2an/2024024Online publication date: 8-Apr-2024
  • (2024)Interpolation of positive matrices by quantum‐inspired optimal controlIET Control Theory & Applications10.1049/cth2.1262518:7(877-886)Online publication date: 30-Jan-2024
  • (2024)A volumetric approach to Monge's optimal transport on surfacesJournal of Computational Physics10.1016/j.jcp.2024.113352517(113352)Online publication date: Nov-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media