Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Non-smooth Newton Methods for Deformable Multi-body Dynamics

Published: 21 October 2019 Publication History

Abstract

We present a framework for the simulation of rigid and deformable bodies in the presence of contact and friction. Our method is based on a non-smooth Newton iteration that solves the underlying nonlinear complementarity problems (NCPs) directly. This approach allows us to support nonlinear dynamics models, including hyperelastic deformable bodies and articulated rigid mechanisms, coupled through a smooth isotropic friction model. The fixed-point nature of our method means it requires only the solution of a symmetric linear system as a building block. We propose a new complementarity preconditioner for NCP functions that improves convergence, and we develop an efficient GPU-based solver based on the conjugate residual (CR) method that is suitable for interactive simulations. We show how to improve robustness using a new geometric stiffness approximation and evaluate our method’s performance on a number of robotics simulation scenarios, including dexterous manipulation and training using reinforcement learning.

Supplementary Material

macklin (macklin.zip)
Supplemental movie and image files for, Non-smooth Newton Methods for Deformable Multi-body Dynamics

References

[1]
Vincent Acary and Bernard Brogliato. 2008. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer Science 8 Business Media.
[2]
Pierre Alart. 1997. Méthode de Newton généralisée en mécanique du contact. J. Afric. Math. Appl. 76 (1997), 83--108.
[3]
Pierre Alart and Alain Curnier. 1991. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 3 (1991), 353--375.
[4]
Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2017. Geometric stiffness for real-time constrained multibody dynamics. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 235--246.
[5]
Mihai Anitescu and Gary D. Hart. 2004. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Internat. J. Numer. Methods Engrg. 60, 14 (2004), 2335--2371.
[6]
Uri M. Ascher, Hongsheng Chin, Linda R. Petzold, and Sebastian Reich. 1995. Stabilization of constrained mechanical systems with DAEs and invariant manifolds. J. Struct. Mech. 23, 2 (1995), 135--157.
[7]
Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. 2014. A survey on position-based simulation methods in computer graphics. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 228--251.
[8]
Michele Benzi, Gene H. Golub, and Jörg Liesen. 2005. Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1--137.
[9]
Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet, and Vincent Acary. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Trans. Graph. 30, 1 (2011), 6.
[10]
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (2014), 154.
[11]
Stephen P. Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
[12]
Charles G. Broyden. 1965. A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 92 (1965), 577--593.
[13]
Frank H. Clarke. 1990. Optimization and Nonsmooth Analysis. Vol. 5. Siam.
[14]
Michael B. Cline and Dinesh K. Pai. 2003. Post-stabilization for rigid body simulation with contact and constraints. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’03), Vol. 3. IEEE, 3744--3751.
[15]
Richard W. Cottle. 2008. Linear complementarity problem. In Encyclopedia of Optimization. Springer, 1873--1878.
[16]
Erwin Coumans. 2015. Bullet physics simulation. In Proceedings of the ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York, NY, Article 7.
[17]
Alain Curnier and Pierre Alart. 1988. A generalized Newton method for contact problems with friction. Journal de mécanique théorique et appliquée 7, suppl. 1 (1988), 67--82. http://infoscience.epfl.ch/record/54198.
[18]
Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. In ACM Transactions on Graphics, Vol. 30. ACM, 139.
[19]
Steven P. Dirkse and Michael C. Ferris. 1995. The path solver: A nommonotone stabilization scheme for mixed complementarity problems. Optimiz. Methods Softw. 5, 2 (1995), 123--156.
[20]
Christian Duriez. 2013. Control of elastic soft robots based on real-time finite element method. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’13). IEEE, 3982--3987.
[21]
Kenny Erleben. 2013. Numerical methods for linear complementarity problems in physics-based animation. In Proceedings of the ACM SIGGRAPH 2013 Courses. ACM, 8.
[22]
Kenny Erleben. 2017. Rigid body contact problems using proximal operators. In Proceedings of the ACM Symposium on Computer Animation. 13.
[23]
Michael C. Ferris and Todd S. Munson. 2000. Complementarity Problems in GAMS and the PATH Solver1. J. Econ. Dynam. Control 24, 2 (2000), 165--188.
[24]
Andreas Fischer. 1992. A special Newton-type optimization method. Optimization 24, 3--4 (1992), 269--284.
[25]
David Chin-Lung Fong and Michael Saunders. 2012. CG versus MINRES: An empirical comparison. Sultan Qaboos Univ. J. Sci. 17, 1 (2012), 44--62.
[26]
Mihai Frâncu and Florica Moldoveanu. 2015. Virtual try on systems for clothes: Issues and solutions. UPB Sci. Bull., Ser. C 77, 4 (2015), 31--44.
[27]
Masao Fukushima, Zhi-Quan Luo, and Paul Tseng. 2002. Smoothing functions for second-order-cone complementarity problems. SIAM J. Optimiz. 12, 2 (2002), 436--460.
[28]
Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. 2017. Emergence of locomotion behaviours in rich environments. arXiv:1707.02286.
[29]
Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of Conjugate Gradients for Solving Linear Systems. Vol. 49. NBS Washington, DC.
[30]
Michael Hintermüller. 2010. Semismooth Newton methods and applications. (2010).
[31]
Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. 2011. Soft robotics for chemists. Angewandte Chemie 123, 8 (2011), 1930--1935.
[32]
Michel Jean. 1999. The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 3--4 (1999), 235--257.
[33]
Michel Jean and Jean Jacques Moreau. 1992. Unilaterality and dry friction in the dynamics of rigid body collections. 1st Contact Mechanics International Symposium. 31--48. https://hal.archives-ouvertes.fr/hal-01863710.
[34]
Franck Jourdan, Pierre Alart, and Michel Jean. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Comput. Methods Appl. Mech. Eng. 155, 1--2 (1998), 31--47.
[35]
Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered projections for frictional contact in multibody systems. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 164.
[36]
Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun. 2014. Adaptive nonlinearity for collisions in complex rod assemblies. ACM Trans. Graph. 33, 4 (2014), 123.
[37]
Cornelius Lanczos. 1970. The Variational Principles of Mechanics. Vol. 4. Courier Corporation.
[38]
Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. 2018. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37, 4--5 (2018), 421--436.
[39]
Yanmei Li and Imin Kao. 2001. A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’01), Vol. 3. IEEE, 3055--3060.
[40]
Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2016. Towards real-time simulation of hyperelastic materials. arXiv preprint arXiv:1604.07378.
[41]
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games. ACM, 49--54.
[42]
Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. 2017. Dex-Net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. CoRR abs/1703.09312. http://arxiv.org/abs/1703.09312.
[43]
Nicholas Maratos. 1978. Exact Penalty Function Algorithms for Finite Dimensional and Control Optimization Problems. Ph.D. Dissertation. Imperial College London (University of London).
[44]
Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. 34, 3 (2015), 32.
[45]
T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. 2001. The semismooth algorithm for large scale complementarity problems. INFORMS J. Comput. 13 (2001), 294--311.
[46]
Sarah Niebe and Kenny Erleben. 2015. Numerical methods for linear complementarity problems in physics-based animation. Synth. Lect. Comput. Graph. Animat. 7, 1 (2015), 1--159.
[47]
Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 151 (1980), 773--782.
[48]
Jorge Nocedal and Stephen Wright. 2006. Numerical Optimization. Springer Science 8 Business Media.
[49]
OpenAI. 2017. Roboschool. Retrieevd from https://github.com/openai/roboschool.
[50]
Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit contact handling for deformable objects. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 559--568.
[51]
Jong-Shi Pang. 1990. Newton’s method for B-differentiable equations. Math. Operat. Res. 15, 2 (1990), 311--341.
[52]
Alvaro G. Perez, Gabriel Cirio, Fernando Hernandez, Carlos Garre, and Miguel A. Otaduy. 2013. Strain limiting for soft finger contact simulation. In Proceedings of the World Haptics Conference (WHC’13). IEEE, 79--84.
[53]
Liqun Qi and Jie Sun. 1993. A nonsmooth version of Newton’s method. Math. Program. 58, 1--3 (1993), 353--367.
[54]
Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. Vol. 82. SIAM.
[55]
Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. 2017. Sim2real view invariant visual servoing by recurrent control. arXiv:1712.07642.
[56]
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
[57]
Martin Servin, Claude Lacoursiere, and Niklas Melin. 2006. Interactive simulation of elastic deformable materials. In Proceedings of the SIGRAD Conference. 22--32.
[58]
Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 95--103.
[59]
Morten Silcowitz, Sarah Niebe, and Kenny Erleben. 2009. Nonsmooth newton method for fischer function reformulation of contact force problems for interactive rigid body simulation. In Proceedings of 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS'09). 105--114.
[60]
Morten Silcowitz-Hansen, Sarah Niebe, and Kenny Erleben. 2010. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems. Visual Comput. 26, 6--8 (2010), 893--901.
[61]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean flesh simulation. ACM Trans. Graph. 37, 2 (2018), 12.
[62]
Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2012. Reflections on simultaneous impact. ACM Trans. Graph. 31, 4 (2012), 106.
[63]
David Stewart and Jeffrey C. Trinkle. 2000. An implicit time-stepping scheme for rigid body dynamics with coulomb friction. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’00), Vol. 1. IEEE, 162--169.
[64]
David E. Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM Rev. 42, 1 (2000), 3--39.
[65]
David E. Stewart and Jeffrey C. Trinkle. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Eng. 39, 15 (1996), 2673--2691.
[66]
Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. 2018. Sim-to-Real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332.
[67]
Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 181--190.
[68]
Françoise Tisseur. 2001. Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 4 (2001), 1038--1057.
[69]
Emanuel Todorov. 2010. Implicit nonlinear complementarity: A new approach to contact dynamics. In IEEE International Conference on Robotics and Automation (ICRA’10). IEEE, 2322--2329.
[70]
Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4 (July 2012).
[71]
Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable constrained dynamics. ACM Trans. Graph. 34, 4 (2015), 132.
[72]
Ernst Hairer and Gerhard Wanner. 2010. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Vol. 14. Springer.
[73]
Jedediyah Williams, Ying Lu, and J. C. Trinkle. 2017. A geometrically exact contact model for polytopes in multirigid-body simulation. J. Comput. Nonlin. Dynam. 12, 2 (2017), 021001.
[74]
Changxi Zheng and Doug L. James. 2011. Toward high-quality modal contact sound. ACM Trans. Graph. 30, 4 (Aug. 2011).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 38, Issue 5
October 2019
191 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3341165
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 October 2019
Accepted: 01 May 2019
Revised: 01 May 2019
Received: 01 August 2018
Published in TOG Volume 38, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Numerical optimization
  2. contact
  3. friction
  4. multi-body dynamics
  5. robotics

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)175
  • Downloads (Last 6 weeks)15
Reflects downloads up to 12 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Withdrawal model for fiber motions in the tuft disentanglementTextile Research Journal10.1177/0040517523122375894:9-10(1111-1125)Online publication date: 6-Feb-2024
  • (2024)GIPC: Fast and Stable Gauss-Newton Optimization of IPC Barrier EnergyACM Transactions on Graphics10.1145/364302843:2(1-18)Online publication date: 27-Jan-2024
  • (2024)Primal-Dual Non-Smooth Friction for Rigid Body AnimationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657485(1-10)Online publication date: 13-Jul-2024
  • (2024)Contact Models in Robotics: A Comparative AnalysisIEEE Transactions on Robotics10.1109/TRO.2024.343420840(3716-3733)Online publication date: 2024
  • (2024)Force-Constrained Visual Policy: Safe Robot-Assisted Dressing via Multi-Modal SensingIEEE Robotics and Automation Letters10.1109/LRA.2024.33757129:5(4178-4185)Online publication date: May-2024
  • (2024)Higher Replay Ratio Empowers Sample-Efficient Multi-Agent Reinforcement Learning2024 IEEE Conference on Games (CoG)10.1109/CoG60054.2024.10645658(1-8)Online publication date: 5-Aug-2024
  • (2024)A unified analytical expression of the tangent stiffness matrix of holonomic constraintsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2023.116667419(116667)Online publication date: Feb-2024
  • (2024)Linear Convergence of the Derivative-Free Proximal Bundle Method on Convex Nonsmooth Functions, with Application to the Derivative-Free $\mathcal{VU}$-AlgorithmSet-Valued and Variational Analysis10.1007/s11228-024-00718-232:2Online publication date: 20-May-2024
  • (2024)Efficient frictional contacts for soft body dynamics via ADMMThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03438-840:7(4569-4583)Online publication date: 1-Jul-2024
  • (2023)Fast GPU-based Two-way Continuous Collision HandlingACM Transactions on Graphics10.1145/360455142:5(1-15)Online publication date: 28-Jul-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media