Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Planar Graphs Have Bounded Queue-Number

Published: 06 August 2020 Publication History

Abstract

We show that planar graphs have bounded queue-number, thus proving a conjecture of Heath et al. [66] from 1992. The key to the proof is a new structural tool called layered partitions, and the result that every planar graph has a vertex-partition and a layering, such that each part has a bounded number of vertices in each layer, and the quotient graph has bounded treewidth. This result generalises for graphs of bounded Euler genus. Moreover, we prove that every graph in a minor-closed class has such a layered partition if and only if the class excludes some apex graph. Building on this work and using the graph minor structure theorem, we prove that every proper minor-closed class of graphs has bounded queue-number.
Layered partitions have strong connections to other topics, including the following two examples. First, they can be interpreted in terms of strong products. We show that every planar graph is a subgraph of the strong product of a path with some graph of bounded treewidth. Similar statements hold for all proper minor-closed classes. Second, we give a simple proof of the result by DeVos et al. [31] that graphs in a proper minor-closed class have low treewidth colourings.

References

[1]
Martin Aigner and Günter M. Ziegler. 2010. Proofs from the Book (4th ed.). Springer.
[2]
Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey Pupyrev. 2018. Queue layouts of planar 3-trees. In Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) (Lecture Notes in Computer Science), Therese C. Biedl and Andreas Kerren (Eds.), vol. 11282. Springer, 213–226.
[3]
Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey Pupyrev. 2020. Queue layouts of planar 3-trees. Algorithmica (2020).
[4]
Noga Alon and Vera Asodi. 2002. Sparse universal graphs. J. Comput. Appl. Math. 142, 1 (2002), 1–11. MR: 1910514.
[5]
Noga Alon and Michael Capalbo. 2007. Sparse universal graphs for bounded-degree graphs. Random Structures Algorithms 31, 2 (2007), 123–133.
[6]
Noga Alon, Jarosław Grytczuk, Mariusz Hałuszczak, and Oliver Riordan. 2002. Nonrepetitive colorings of graphs. Random Structures Algorithms 21, 3–4 (2002), 336–346. MR: 1945373.
[7]
Noga Alon, Bojan Mohar, and Daniel P. Sanders. 1996. On acyclic colorings of graphs on surfaces. Israel J. Math. 94 (1996), 273–283.
[8]
Thomas Andreae. 1986. On a pursuit game played on graphs for which a minor is excluded. J. Comb. Theory, Ser. B 41, 1 (1986), 37–47. MR: 0854602.
[9]
László Babai, Fan R. K. Chung, Paul Erdős, Ron L. Graham, and Joel H. Spencer. 1982. On graphs which contain all sparse graphs. In Theory and Practice of Combinatorics. North-Holland Math. Stud., Vol. 60. 21–26. MR: 806964.
[10]
Brenda S. Baker. 1994. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 1 (1994), 153–180. MR: 1369197.
[11]
Michael J. Bannister, William E. Devanny, Vida Dujmović, David Eppstein, and David R. Wood. 2019. Track layouts, layered path decompositions, and leveled planarity. Algorithmica 81, 4 (2019), 1561–1583. MR: 3936168.
[12]
Michael A. Bekos, Henry Förster, Martin Gronemann, Tamara Mchedlidze, Fabrizio Montecchiani, Chrysanthi N. Raftopoulou, and Torsten Ueckerdt. 2019. Planar graphs of bounded degree have bounded queue number. SIAM J. Comput. 48, 5 (2019), 1487–1502.
[13]
Sandeep N. Bhatt, Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. 1989. Universal graphs for bounded-degree trees and planar graphs. SIAM J. Discrete Math. 2, 2 (1989), 145–155. MR: 990447.
[14]
Hans L. Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1-2 (1998), 1–45. MR: 1647486.
[15]
Hans L. Bodlaender and Joost Engelfriet. 1997. Domino treewidth. J. Algorithms 24, 1 (1997), 94–123. MR: 1453952.
[16]
Marthe Bonamy, Cyril Gavoille, and Michał Pilipczuk. 2020. Shorter labeling schemes for planar graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’20), Shuchi Chawla (Ed.). 446–462. arXiv: 1908.03341.
[17]
Oleg V. Borodin. 1979. On acyclic colorings of planar graphs. Discrete Math. 25, 3 (1979), 211–236.
[18]
Oleg V. Borodin, Alexandr V. Kostochka, Jaroslav Nešetřil, André Raspaud, and Éric Sopena. 1998. On universal graphs for planar oriented graphs of a given girth. Discrete Math. 188, 1–3 (1998), 73–85.
[19]
Julia Böttcher, Klaas Paul Pruessmann, Anusch Taraz, and Andreas Würfl. 2010. Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs. European J. Combin. 31, 5 (2010), 1217–1227.
[20]
Jonathan F. Buss and Peter Shor. 1984. On the pagenumber of planar graphs. In Proceedings of the 16th ACM Symposium. on Theory of Computing (STOC’84). ACM, 98–100.
[21]
Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. 2012. Algorithms for the edge-width of an embedded graph. Comput. Geom. 45, 5--6 (2012), 215–224.
[22]
L. Sunil Chandran, Alexandr Kostochka, and J. Krishnam Raju. 2008. Hadwiger number and the Cartesian product of graphs. Graphs Combin. 24, 4 (2008), 291–301.
[23]
Zhi-Zhong Chen. 2001. Approximation algorithms for independent sets in map graphs. J. Algorithms 41, 1 (2001), 20–40.
[24]
Zhi-Zhong Chen. 2007. New bounds on the edge number of a k-map graph. J. Graph Theory 55, 4 (2007), 267–290. MR: 2336801.
[25]
Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. 2002. Map graphs. J. ACM 49, 2 (2002), 127–138. MR: 2147819.
[26]
Robert F. Cohen, Peter Eades, Tao Lin, and Frank Ruskey. 1996. Three-dimensional graph drawing. Algorithmica 17, 2 (1996), 199–208.
[27]
Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. 2005. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1, 1 (2005), 33–47.
[28]
Erik D. Demaine and MohammadTaghi Hajiaghayi. 2004. Diameter and treewidth in minor-closed graph families, revisited. Algorithmica 40, 3 (2004), 211–215. MR: 2080518.
[29]
Erik D. Demaine and MohammadTaghi Hajiaghayi. 2004. Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04). SIAM, 840–849. http://dl.acm.org/citation.cfm?id=982792.982919.
[30]
Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. 2005. Algorithmic graph minor theory: Decomposition, approximation, and coloring. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05). IEEE, 637–646.
[31]
Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce Reed, Paul Seymour, and Dirk Vertigan. 2004. Excluding any graph as a minor allows a low tree-width 2-coloring. J. Combin. Theory Ser. B 91, 1 (2004), 25–41. MR: 2047529.
[32]
Giuseppe Di Battista, Fabrizio Frati, and János Pach. 2013. On the queue number of planar graphs. SIAM J. Comput. 42, 6 (2013), 2243–2285. MR: 3141759.
[33]
Emilio Di Giacomo and Henk Meijer. 2004. Track drawings of graphs with constant queue number. In Proceedings of the 11th International Symposium on Graph Drawing (GD’03) (Lecture Notes in Computer Science), Giuseppe Liotta (Ed.), Vol. 2912. Springer, 214–225.
[34]
Reinhard Diestel. 2018. Graph Theory (5th ed.). Graduate Texts in Mathematics, Vol. 173. Springer. MR: 3822066.
[35]
Reinhard Diestel and Daniela Kühn. 2005. Graph minor hierarchies. Discrete Appl. Math. 145, 2 (2005), 167–182.
[36]
Guoli Ding and Bogdan Oporowski. 1995. Some results on tree decomposition of graphs. J. Graph Theory 20, 4 (1995), 481–499. MR: 1358539.
[37]
Guoli Ding and Bogdan Oporowski. 1996. On tree-partitions of graphs. Discrete Math. 149, 1–3 (1996), 45–58. MR: 1375097.
[38]
Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, and Dirk Vertigan. 1998. Partitioning graphs of bounded tree-width. Combinatorica 18, 1 (1998), 1–12. MR: 1645638.
[39]
Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, and Dirk Vertigan. 2000. Surfaces, tree-width, clique-minors, and partitions. J. Combin. Theory Ser. B 79, 2 (2000), 221–246. MR: 1769192.
[40]
Michał Dębski, Stefan Felsner, Piotr Micek, and Felix Schröder. 2020. Improved bounds for centered colorings. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’20), Shuchi Chawla (Ed.). 2212–2226. arXiv: 1907.04586.
[41]
Vida Dujmović. 2015. Graph layouts via layered separators. J. Combin. Theory Series B. 110 (2015), 79–89. MR: 3279388.
[42]
Vida Dujmović, David Eppstein, Gwenaël Joret, Pat Morin, and David R. Wood. 2018. Minor-closed graph classes with bounded layered pathwidth. arXiv: 1810.08314.
[43]
Vida Dujmović, David Eppstein, and David R. Wood. 2017. Structure of graphs with locally restricted crossings. SIAM J. Discrete Math. 31, 2 (2017), 805–824.
[44]
Vida Dujmović, Louis Esperet, Gwenaël Joret, Cyril Gavoille, Piotr Micek, and Pat Morin. 2020. Adjacency labelling for planar graphs (and beyond). (2020). arXiv: 2003.04280.
[45]
Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. 2020. Planar graphs have bounded nonrepetitive chromatic number. Advances in Combinatorics 5 (2020).
[46]
Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. 2020. Clustered 3-colouring graphs of bounded degree. (2020). arXiv: 2002.11721.
[47]
Vida Dujmović and Fabrizio Frati. 2018. Stack and queue layouts via layered separators. J. Graph Algorithms Appl. 22, 1 (2018), 89–99. MR: 3757347.
[48]
Vida Dujmović, Pat Morin, and David R. Wood. 2005. Layout of graphs with bounded tree-width. SIAM J. Comput. 34, 3 (2005), 553–579. MR: 2137079.
[49]
Vida Dujmović, Pat Morin, and David R. Wood. 2017. Layered separators in minor-closed graph classes with applications. J. Combin. Theory Ser. B 127 (2017), 111–147. arXiv:1306.1595MR: 3704658.
[50]
Vida Dujmović, Pat Morin, and David R. Wood. 2019. Queue layouts of graphs with bounded degree and bounded genus. (2019). arXiv: 1901.05594.
[51]
Vida Dujmović, Attila Pór, and David R. Wood. 2004. Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6, 2 (2004), 497–522. http://dmtcs.episciences.org/315 MR: 2180055.
[52]
Vida Dujmović and David R. Wood. 2004. On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6, 2 (2004), 339–358. http://dmtcs.episciences.org/317 MR: 2081479.
[53]
Vida Dujmović and David R. Wood. 2004. Three-dimensional grid drawings with sub-quadratic volume. In Towards a Theory of Geometric Graphs, János Pach (Ed.). Contemporary Mathematics, vol. 342. Amer. Math. Soc., 55–66. MR: 2065252.
[54]
Vida Dujmović and David R. Wood. 2005. Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7 (2005), 155–202. http://dmtcs.episciences.org/346 MR: 2164064.
[55]
Vida Dujmović and David R. Wood. 2006. Upward three-dimensional grid drawings of graphs. Order 23, 1 (2006), 1–20. MR: 2258457.
[56]
Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood. 2020. Notes on graph product structure theory. (2020). arXiv: 2001.08860.
[57]
Zdeněk Dvořák and Robin Thomas. 2014. List-coloring apex-minor-free graphs. arXiv: 1401.1399.
[58]
David Eppstein. 2000. Diameter and treewidth in minor-closed graph families. Algorithmica 27, 3–4 (2000), 275–291. MR: 1759751.
[59]
Jeff Erickson and Kim Whittlesey. 2005. Greedy optimal homotopy and homology generators. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, 1038–1046.
[60]
Stefan Felsner, Giussepe Liotta, and Stephen K. Wismath. 2002. Straight-line drawings on restricted integer grids in two and three dimensions. In Proceedings of the 9th International Symposium on Graph Drawing (GD’01)(Computer Science), Petra Mutzel, Michael Jünger, and Sebastian Leipert (Eds.), vol. 2265. Springer, 328–342.
[61]
Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012. Bidimensionality and geometric graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. 1563–1575. MR: 3205314.
[62]
Jacob Fox and János Pach. 2010. A separator theorem for string graphs and its applications. Combin. Probab. Comput. 19, 3 (2010), 371–390.
[63]
Jacob Fox and János Pach. 2014. Applications of a new separator theorem for string graphs. Combin. Probab. Comput. 23, 1 (2014), 66–74.
[64]
Daniel J. Harvey and David R. Wood. 2017. Parameters tied to treewidth. J. Graph Theory 84, 4 (2017), 364–385. MR: 3623383.
[65]
Toru Hasunuma. 2007. Queue layouts of iterated line directed graphs. Discrete Appl. Math. 155, 9 (2007), 1141–1154. MR: 2321020.
[66]
Lenwood S. Heath, F. Thomson Leighton, and Arnold L. Rosenberg. 1992. Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math. 5, 3 (1992), 398–412. MR: 1172748.
[67]
Lenwood S. Heath and Sriram V. Pemmaraju. 1997. Stack and queue layouts of posets. SIAM J. Discrete Math. 10, 4 (1997), 599–625.
[68]
Lenwood S. Heath and Arnold L. Rosenberg. 1992. Laying out graphs using queues. SIAM J. Comput. 21, 5 (1992), 927–958. MR: 1181408.
[69]
Lenwood S. Heath and Arnold L. Rosenberg. 2011. Graph Layout using Queues. (2011). https://www.researchgate.net/publication/220616637_Laying_Out_Graphs_Using_Queues
[70]
Percy J. Heawood. 1890. Map colour theorem. Quart. J. Pure Appl. Math. 24 (1890), 332–338.
[71]
Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and Sebastian Siebertz. 2017. On the generalised colouring numbers of graphs that exclude a fixed minor. European J. Combin. 66 (2017), 129–144.
[72]
Jan van den Heuvel and David R. Wood. 2017. Improper colourings inspired by Hadwiger’s Conjecture. (2017). arXiv: 1704.06536.
[73]
Jan van den Heuvel and David R. Wood. 2018. Improper colourings inspired by Hadwiger’s conjecture. J. London Math. Soc. 98 (2018), 129–148. Issue 1.
[74]
Sampath Kannan, Moni Naor, and Steven Rudich. 1988. Implicit representation of graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988). 334–343.
[75]
Sampath Kannan, Moni Naor, and Steven Rudich. 1992. Implicit representation of graphs. SIAM J. Discrete Math. 5, 4 (1992), 596–603.
[76]
Hal A. Kierstead and Daqing Yang. 2003. Orderings on graphs and game coloring number. Order 20, 3 (2003), 255–264.
[77]
Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. 2018. The queue-number of posets of bounded width or height. In Graph Drawing and Network Visualization (Lecture Notes in Computer Science), vol. 11282. Springer, 200–212.
[78]
Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. 2017. An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25 (2017), 49–67. MR: 3697129.
[79]
Andreĭ Kotlov. 2001. Minors and strong products. European J. Combin. 22, 4 (2001), 511–512. MR: 1829745.
[80]
Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki. 2014. Lower bounds for treewidth of product graphs. Discrete Appl. Math. 162 (2014), 251–258. MR: 3128527.
[81]
Jan Kratochvíl. 1991. String graphs. II. Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 1 (1991), 67–78.
[82]
Jan Kratochvíl and Michal Vaner. 2012. A note on planar partial 3-trees. (2012). arXiv: 1210.8113.
[83]
Chun-Hung Liu and David R. Wood. 2019. Clustered graph coloring and layered treewidth. arXiv: 1905.08969.
[84]
Seth M. Malitz. 1994. Genus g graphs have pagenumber O( √g) . J. Algorithms 17, 1 (1994), 85–109. MR: 1279270.
[85]
Bojan Mohar. 1999. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12, 1 (1999), 6–26.
[86]
Bojan Mohar and Carsten Thomassen. 2001. Graphs on Surfaces. Johns Hopkins University Press. MR: 1844449.
[87]
Pat Morin. 2020. A fast algorithm for the product structure of planar graphs. (2020). arXiv: 2004.02530.
[88]
Jaroslav Nešetřil and Patrice Ossona de Mendez. 2012. Sparsity. Algorithms and Combinatorics, vol. 28. Springer. MR: 2920058.
[89]
L. Taylor Ollmann. 1973. On the book thicknesses of various graphs. In Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing (Congr. Numer.), Frederick Hoffman, Roy B. Levow, and Robert S. D. Thomas (Eds.), vol. VIII. Utilitas Math., 459.
[90]
Patrice Ossona de Mendez, Sang-il Oum, and David R. Wood. 2019. Defective colouring of graphs excluding a subgraph or minor. Combinatorica 39, 2 (2019), 377–410.
[91]
János Pach, Torsten Thiele, and Géza Tóth. 1999. Three-dimensional grid drawings of graphs. In Advances in Discrete and Computational Geometry, Bernard Chazelle, Jacob E. Goodman, and Richard Pollack (Eds.). Contemporary Mathematics, vol. 223. Amer. Math. Soc., 251–255. MR: 1661387.
[92]
János Pach and Géza Tóth. 2002. Recognizing string graphs is decidable. Discrete Comput. Geom. 28, 4 (2002), 593–606.
[93]
Sriram V. Pemmaraju. 1992. Exploring the Powers of Stacks and Queues via Graph Layouts. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.
[94]
Michał Pilipczuk and Sebastian Siebertz. 2019. Polynomial bounds for centered colorings on proper minor-closed graph classes. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, Timothy M. Chan (Ed.). 1501–1520. arXiv: 1807.03683.
[95]
Sergey Pupyrev. 2019. Improved bounds for track numbers of planar graphs. (2019). arXiv: 1910.14153.
[96]
Bruce A. Reed. 1997. Tree width and tangles: A new connectivity measure and some applications. In Surveys in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 241. Cambridge University Press, 87–162. MR: 1477746.
[97]
Bruce A. Reed and Paul Seymour. 1998. Fractional colouring and Hadwiger’s conjecture. J. Combin. Theory Ser. B 74, 2 (1998), 147–152. MR: 1654153.
[98]
S. Rengarajan and C. E. Veni Madhavan. 1995. Stack and queue number of 2-trees. In Proceedings of the 1st Annual International Conference on Computing and Combinatorics (COCOON’95) (Lecture Notes in Computer Science), Ding-Zhu Du and Ming Li (Eds.), vol. 959. Springer, 203–212.
[99]
Neil Robertson and Paul Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 3 (1986), 309–322. MR: 0855559.
[100]
Neil Robertson and Paul Seymour. 2003. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B 89, 1 (2003), 43–76. MR: 1999736.
[101]
Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. 2003. Recognizing string graphs in NP. J. Comput. System Sci. 67, 2 (2003), 365–380.
[102]
Marcus Schaefer and Daniel Štefankovič. 2004. Decidability of string graphs. J. Comput. System Sci. 68, 2 (2004), 319–334.
[103]
Alex Scott, Paul Seymour, and David R. Wood. 2019. Bad news for chordal partitions. J. Graph Theory 90 (2019), 5–12.
[104]
Detlef Seese. 1985. Tree-partite graphs and the complexity of algorithms. In Proceedings of the International Conference on Fundamentals of Computation Theory (Lecture Notes in Computer Science), Lothar Budach (Ed.), vol. 199. Springer, 412–421. MR: 0821258.
[105]
Farhad Shahrokhi. 2013. New representation results for planar graphs. In Proceedings of the 29th European Workshop on Computational Geometry (EuroCG 2013). 177–180. arXiv: 1502.06175.
[106]
Jiun-Jie Wang. 2017. Layouts for plane graphs on constant number of tracks. (2017). arXiv: 1708.02114.
[107]
Veit Wiechert. 2017. On the queue-number of graphs with bounded tree-width. Electron. J. Combin. 24, 1 (2017), 1.65. https://doi.org/10.37236/6429 MR: 3651947.
[108]
David R. Wood. 2005. Queue layouts of graph products and powers. Discrete Math. Theor. Comput. Sci. 7, 1 (2005), 255–268. http://dmtcs.episciences.org/352 MR: 2183176.
[109]
David R. Wood. 2008. Bounded-degree graphs have arbitrarily large queue-number. Discrete Math. Theor. Comput. Sci. 10, 1 (2008), 27–34. http://dmtcs.episciences.org/434 MR: 2369152.
[110]
David R. Wood. 2008. The structure of Cartesian products. (2008). https://www.birs.ca/workshops/2008/08w5079/report08w5079.pdf
[111]
David R. Wood. 2009. On tree-partition-width. European J. Combin. 30, 5 (2009), 1245–1253. MR: 2514645.
[112]
David R. Wood. 2011. Clique minors in Cartesian products of graphs. New York J. Math. 17 (2011), 627–682. http://nyjm.albany.edu/j/2011/17-28.html
[113]
David R. Wood. 2013. Treewidth of Cartesian products of highly connected graphs. J. Graph Theory 73, 3 (2013), 318–321.
[114]
Zefang Wu, Xu Yang, and Qinglin Yu. 2010. A note on graph minors and strong products. Appl. Math. Lett. 23, 10 (2010), 1179–1182. MR: 2665591.
[115]
Mihalis Yannakakis. 1989. Embedding planar graphs in four pages. J. Comput. System Sci. 38, 1 (1989), 36–67. MR: 0990049.
[116]
Vida Dujmović, Pat Morin, and David R. Wood. 2019. Graph product structure for non-minor-closed classes. arXiv: 1907.05168.

Cited By

View all
  • (2025)Parameterizing path partitionsTheoretical Computer Science10.1016/j.tcs.2024.1150291028(115029)Online publication date: Feb-2025
  • (2025)Subchromatic numbers of powers of graphs with excluded minorsDiscrete Mathematics10.1016/j.disc.2024.114377348:4(114377)Online publication date: Apr-2025
  • (2024)Powers of planar graphs, product structure, and blocking partitionsInnovations in Graph Theory10.5802/igt.41(39-86)Online publication date: 26-Nov-2024
  • Show More Cited By

Index Terms

  1. Planar Graphs Have Bounded Queue-Number

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 67, Issue 4
    August 2020
    265 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/3403612
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 August 2020
    Online AM: 07 May 2020
    Accepted: 01 February 2020
    Received: 01 May 2019
    Published in JACM Volume 67, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Graph theory
    2. graph minor
    3. graph product
    4. planar graph
    5. queue layout
    6. queue-number

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)100
    • Downloads (Last 6 weeks)6
    Reflects downloads up to 02 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Parameterizing path partitionsTheoretical Computer Science10.1016/j.tcs.2024.1150291028(115029)Online publication date: Feb-2025
    • (2025)Subchromatic numbers of powers of graphs with excluded minorsDiscrete Mathematics10.1016/j.disc.2024.114377348:4(114377)Online publication date: Apr-2025
    • (2024)Powers of planar graphs, product structure, and blocking partitionsInnovations in Graph Theory10.5802/igt.41(39-86)Online publication date: 26-Nov-2024
    • (2024)Product Structure Extension of the Alon–Seymour–Thomas TheoremSIAM Journal on Discrete Mathematics10.1137/23M159177338:3(2095-2107)Online publication date: 9-Jul-2024
    • (2024)Shallow Minors, Graph Products, and Beyond-Planar GraphsSIAM Journal on Discrete Mathematics10.1137/22M154029638:1(1057-1089)Online publication date: 13-Mar-2024
    • (2024)Product structure of graphs with an excluded minorTransactions of the American Mathematical Society, Series B10.1090/btran/19211:35(1233-1248)Online publication date: 1-Nov-2024
    • (2024)Stack and queue numbers of graphs revisitedEuropean Journal of Combinatorics10.1016/j.ejc.2024.104094(104094)Online publication date: Dec-2024
    • (2024)Colouring strong productsEuropean Journal of Combinatorics10.1016/j.ejc.2023.103847121(103847)Online publication date: Oct-2024
    • (2024)Neighborhood Complexity of Planar GraphsCombinatorica10.1007/s00493-024-00110-644:5(1115-1148)Online publication date: 1-Oct-2024
    • (2024)Recognizing Map Graphs of Bounded TreewidthAlgorithmica10.1007/s00453-023-01180-686:2(613-637)Online publication date: 1-Feb-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media